

DOI: 10.3724/SP.J.1035.2011.00829

在高植物蛋白饲料中添加水解鱼蛋白对牙鲆幼鱼的影响

郑珂珂 梁萌青 姚宏波 常青 王家林

(中国水产科学研究院黄海水产研究所, 青岛 266071)

摘要: 研究采用酶解技术水解太平洋鳕鱼肉, 制备不同分子量组分的两种水解鱼蛋白产品(Fish protein hydrolysate, FPH-A 和 FPH-B)。在牙鲆幼鱼高植物蛋白饲料配方中, 以水解鱼蛋白产物 1.2% 和 3.7% 两个梯度替代饲料中的鱼粉蛋白, 在室内流水养殖系统中进行了为期 60d 的生长实验。研究了高植物蛋白饲料中添加水解鱼蛋白对肉食性鱼类牙鲆(*Paralichthys olivaceus*)生长性能和饲料利用的影响。结果表明, 添加 3.7% 的水解鱼蛋白显著促进了牙鲆幼鱼的生长, 特别是添加了富含低分子量组分的水解蛋白产品(FPH-A)后实验鱼的特定生长率最高。各实验处理组牙鲆摄食率没有显著差异。摄食添加 3.7% FPH-A 的牙鲆鱼体粗蛋白含量显著高于对照鱼粉组。添加水解鱼蛋白显著提高了牙鲆幼鱼的蛋白质消化率、蛋白质效率和蛋白质沉积率, 摄食 3.7% FPH-A 实验鱼蛋白质消化率、蛋白质效率和蛋白沉积率最高, 显著高于其他各组。实验表明, 高植物蛋白饲料中添加低分子量组分的水解鱼蛋白可显著提高牙鲆幼鱼的生长和饲料蛋白利用。

关键词: 水解鱼蛋白; 植物蛋白; 牙鲆; 生长; 饲料利用

中图分类号: S963 文献标识码: A 文章编号: 1000-3207 (2011)05-0829-06

近些年, 由于海洋渔业资源的减少及捕捞量的下降, 鱼粉的供应量锐减, 加剧了蛋白原料供应总量的短缺, 使得养殖成本明显增加, 给饲料生产企业和养殖业带来了巨大压力和挑战。鱼粉资源严重不足已成为制约水产养殖业可持续发展的重要瓶颈。因此, 找到部分或者全部替代鱼粉的蛋白源成为鱼类营养与饲料研究热点之一。植物蛋白源以其相对低廉的价格且供应稳定, 备受研究者关注, 但已有的大部分研究表明, 高植物蛋白饲料对肉食性鱼类的生长和饲料利用产生明显的拮抗作用。比如饲料中的植物蛋白添加量较高导致虹鳟^[1]、大西洋鲑^[2]、牙鲆^[3]生长下降和饲料系数上升。造成植物蛋白利用差的原因, 部分是由于植物蛋白含有影响鱼类健康和代谢的抗营养因子, 缺乏一种或多种必需氨基酸和矿物质, 另一个重要因素是植物蛋白在消化过程中低分子肽的释放量和比例与鱼粉明显不同^[4, 5]。

水解鱼蛋白是富含低分子蛋白寡肽的一类蛋白产品, 通过鱼体内源蛋白酶、内切型或外切型商品

蛋白酶限定性酶解获得。现有的一些研究表明, 添加一定量的水解鱼蛋白对鱼类特别是仔幼鱼生长、发育和饲料利用有着显著的促进作用^[6]。Refsti, et al.^[7]报道饲料中 10%—15% 的鱼粉被水解蛋白替代, 大西洋鲑的生长性能提高。鱼粉水解物可提高草鱼的生长性能和蛋白质利用率^[8]。

牙鲆(*Paralichthys olivaceus*)是冷温性底栖的肉食性鱼类, 是我国沿海的重要经济鱼类和海水增养殖鱼类, 对饲料中蛋白质的需求量和质量有较高的要求。本实验研究了采用高植物蛋白饲喂牙鲆幼鱼, 在饲料中添加不同分子量不同替代水平水解鱼蛋白对实验鱼生长性能及饲料利用的影响, 为牙鲆配合饲料替代蛋白源研究提供参考和新的思路。

1 材料与方法

1.1 水解鱼蛋白的制备

采用酶解技术, 利用鳕鱼片加工下脚料碎鱼肉制备水解鱼蛋白: 在 50—55℃ 条件下, 碱性水解蛋

收稿日期: 2010-06-22; 修订日期: 2011-03-03

基金项目: 国家自然科学基金项目(30771660); 国际科技合作项目(2008DFA31720); 公益性行业(农业)科研专项(nhyzx07-046-鮨鲽); 中国水产科学研究院黄海水产研究所基本科研业务费专项资金项目资助

作者简介: 郑珂珂(1980—), 女, 山东济宁人; 博士; 主要从事鱼类营养生理学研究。E-mail: zhengkk@ysfri.ac.cn

通讯作者: 梁萌青(1963—), 女, 研究员; Tel: 0532-85822914; E-mail: liangmq@ysfri.ac.cn

白酶和复合风味蛋白酶联合水解太平洋鳕鱼肉, 酶解液经 Pellicon2 超滤膜堆装置进行超滤, 滤过组分作为水解鱼蛋白产品 A(FPH-A), 未经膜堆超滤的蛋白上清液作为水解鱼蛋白产品 B(FPH-B)。产品 A 和 B 均在真空冷冻干燥机中浓缩冻干备用。制备的水解鱼蛋白产品采用排阻色谱法测定分子量组分^[9]。样品溶解于 0.3% 的十二烷基醇硫酸钠水溶液, 10000 r/min 离心 10 min, 过滤后上色谱柱(TSK G2000), 220 nm 测定。采用牛血清白蛋白, 胃蛋白酶, 碳酸酐酶, 溶菌酶, 细胞色素 C, 右旋糖酐蓝, 抑肽酶等制肽分子量标准曲线。水解鱼蛋白产品 A 和 B 分子量组分(表 1)。

表 1 制备的水解鱼蛋白产品 A 和 B 的分子量组分
Tab. 1 Molecular weight of FPH-A and FPH-B (%)

分子量 (kD)	水解蛋白 A Fish protein hydrolysate A	水解蛋白 B Fish protein hydrolysate B
>20	<0.1	<0.1
10—20	<0.1	0.7
5—10	1.6	15.0
1—5	5.5	14.2
0.1—1	66.4	48.6
<0.1	26.5	21.5

1.2 实验饲料

实验采用等氮等脂的四种配合饲料, 以鱼粉、花生饼为主要蛋白源, 鱼油为主要脂肪源, 饲料配方及营养组成(表 2)。鱼粉组(Fish meal, FM)设为对照组, 分别以不同水解鱼蛋白替代鱼粉的 0% (FM)、3.7% (FPH-A₁)、1.2% (FPH-A₂)、3.7% (FPH-B)。实验饲料原料均粉碎过 60 目后充分混匀后, 用 2% 的明胶做黏合剂, 用饲料颗粒机加工制成直径为 3 mm 的颗粒饲料, 干燥后保存在-20℃备用。

1.3 实验鱼和实验条件

实验用牙鲆幼鱼购自山东烟台天源水产有限公司。生长实验在室内流水养殖系统中进行, 12 个圆形玻璃缸(体积 120 L), 水源为深井过滤的海水, 每缸的进水流速约为 10 L/min, 连续充气。实验期间采用自然光照, 每天测定水温和 pH, 每周测定水体盐度、溶氧和氨氮。水温为(15±1)℃, 盐度为 20—22 g/L, pH 为 7.5±0.1, 溶氧高于 7 mg/L, 氨氮低于 0.5 mg/L。

生长实验开始时, 随机选取体质健康、规格均匀的实验鱼, 称重后随机放入各缸, 实验鱼初始平

均体重为(58.2±3.04) g, 每缸 15 尾。同时随机取 3 组(每组 3 尾)鱼称重, 保存于-20℃以供后续分析鱼体生化成分。

生长实验期间, 每天两次(7: 00 和 15: 00)投喂实验鱼, 每次 0.5 h, 投喂实验饲料至实验鱼表观饱食, 日投喂量约为实验鱼体重的 2%—3%。生长实验开始一周后, 每天用虹吸法收集新鲜成型的粪便, 70℃烘干, 保存于-20℃供后续消化率测定。生长实验持续 60 d。实验结束时, 将鱼饥饿 24 h, 每缸鱼称量终末总重, 同时每缸取 3 尾实验鱼称重, 保存于-20℃用于鱼体成分分析。

表 2 实验饲料配方和营养组成(%干物质)

Tab. 2 Formulation and proximate chemical composition of experimental diets (% in dry matter)

成分 Ingredients (%)	饲料组 Diet No.			
	FPM	FPH-A ₁	FPH-A ₂	FPH-B
鱼粉 Fish meal ¹	30	24	27.5	24
水解鱼蛋白 FPH-A		3.7	1.2	
Fish protein hydrolysate FPH-B				3.7
花生饼 Peanut meal	50	50	50	50
高筋粉 High-gluten wheat flour	10	11.8	10.8	11.8
鱼油 Fish oil	6.0	6.5	6.0	6.5
磷酸二氢钙 Ca(H ₂ PO ₄) ₂	1.5	1.5	1.5	1.5
三氧化二铬 Cr ₂ O ₃	0.5	0.5	0.5	0.5
维生素混合物 Vitamin premix ¹	1.0	1.0	1.0	1.0
矿物质混合物 Mineral premix ¹	1.0	1.0	1.0	1.0
营养成分 Proximate composition (%)				
粗蛋白 Crude protein	46.54	47.70	46.92	46.26
粗脂肪 Crude lipid	9.34	10.17	9.48	9.83
灰分 Ash	10.58	10.05	10.39	10.17
水分 Moisture	6.55	6.82	6.98	6.96
能值 Gross energy (kJ/g)	19.23	19.58	19.34	19.47

注: 1. 由青岛金海力水产科技有限公司提供

Note: 1. Supplied by Qingdao Jinhaili Aquatic Product Technology Co., Ltd.

1.4 生化分析

饲料和全鱼样品在 105℃烘干至恒重, 通过失重法测定干物质含量, 然后进行生化测定。粗蛋白采用凯式定氮法(VELP, UDK142 automatic distillation unit); 粗脂肪采用索氏抽提仪, 以乙醚为抽提液进行测定; 灰分在马福炉中 550℃燃烧 3 h, 失重法测定; 样品中的铬成分采用 GB/T13088—2006 分光光度法测定。

1.5 计算及统计分析方法

特定生长率(%/d) = $100 \times [\ln(\text{终末体重}) - \ln(\text{初始体重})] / \text{实验天数}$

摄食率(%体重/d) = $100 \times \text{总干物质摄食量} / [\text{实验天数} \times (\text{初始体重} + \text{终末体重}) / 2]$

饲料效率(%) = $100 \times \text{鱼体增重(湿重)} / \text{总干物质摄食量}$

蛋白质效率(%) = $100 \times (\text{终末体重} - \text{初始体重}) / \text{蛋白摄入量}$

蛋白质沉积率(%) = $100 \times \text{鱼体蛋白质贮存量} / \text{蛋白摄入量}$

干物质消化率 = $100 \times [1 - (\text{饲料 Cr}_2\text{O}_3 \text{ 含量} / \text{鱼粪 Cr}_2\text{O}_3 \text{ 含量})]$

蛋白消化率 = $100 \times [1 - (\text{饲料 Cr}_2\text{O}_3 \text{ 含量} / \text{鱼粪 Cr}_2\text{O}_3 \text{ 含量}) \times (\text{粪便蛋白含量} / \text{饲料蛋白含量})]$

结果表示为平均值±标准误。采用 SPSS 11.5 统计软件进行分析, 实验结果经一元方差分析(One-way ANOVA)后, 若差异显著进行邓肯多重比较(Duncan's multiple range tests), $P < 0.05$ 被认为差

异显著。

2 结果

2.1 生长及鱼体组成

在饲料中添加水解鱼蛋白显著影响牙鲆幼鱼的生长性能(表 3)。添加 3.7% 的水解鱼蛋白产品 A(FPH-A₁ 组)饲喂的牙鲆幼鱼生长最好, 特定生长率显著高于对照鱼粉组和添加 1.2% 水解蛋白产品 A(FPH-A₂ 组)($P < 0.05$)。摄食添加水解蛋白产品 B 的牙鲆幼鱼特定生长率低于 FPH-A₁ 组实验鱼, 高于对照组和 FPH-A₂ 组实验鱼, 但差异不显著($P > 0.05$)。在饲料中添加水解鱼蛋白对牙鲆幼鱼成活率没有显著影响($P > 0.05$)。

如表 4 所示, 60d 的生长实验结束后, 添加水解鱼蛋白显著影响了牙鲆幼鱼鱼体粗蛋白含量。FPH-A₁ 组牙鲆鱼体粗蛋白含量最高, 显著高于对照 FM 组实验鱼($P < 0.05$), 其他各组实验鱼粗蛋白含量差异不显著。在饲料中添加水解鱼蛋白对牙鲆幼鱼鱼体水分、粗脂肪和灰分含量没有显著影响($P > 0.05$)。

表 3 水解鱼蛋白对牙鲆生长的影响(平均值±标准差)

Tab. 3 The effects of fish protein hydrolysate on growth performance of juvenile flounder (Mean ± SE)

生长 Growth	组别 Group			
	FM	FPH-A ₁	FPH-A ₂	FPH-B
初始体重 Initial body weight (g)	59.27±1.34	59.49±3.10	57.47±2.49	57.56±5.22
终末体重 Final body weight (g)	90.32±1.54 ^a	103.06±2.52 ^b	87.96±4.53 ^a	96.14±1.49 ^{ab}
特定生长率 Specific growth rate (%/d)	0.70±0.03 ^a	0.91±0.04 ^b	0.71±0.09 ^a	0.85±0.03 ^{ab}
成活率 Survival rate (%)	91.11±5.88	93.33±6.67	86.67±3.85	84.44±4.44

注: 同一行中数据中具有不同字母的表示差异显著($P < 0.05$); 下同

Note: values with different superscripts in the same row are significantly different ($P < 0.05$); the same below

表 4 水解鱼蛋白对牙鲆鱼体化学组成的影响(平均值±标准差)

Tab. 4 The effects of fish protein hydrolysate on body proximate compositions of juvenile flounder (Mean ± SE)

体成分 Body compositions	组别 Group			
	FM	FPH-A ₁	FPH-A ₂	FPH-B
水分 Moisture (%)	75.03±0.63	73.99±0.35	74.87±0.91	74.63±0.62
粗蛋白质 Crude protein (%)	15.55±0.32 ^a	17.61±0.30 ^b	16.02±0.58 ^{ab}	16.23±0.43 ^{ab}
粗脂 Crude lipid (%)	4.40±0.03	4.89±0.04	4.47±0.14	4.71±0.36
灰分 Ash (%)	3.11±0.07	3.25±0.03	3.16±0.10	3.28±0.11

2.2 饲料利用

如表 5 所示, 饲料中添加不同分子量不同替代水平水解鱼蛋白对牙鲆幼鱼的摄食率没有显著影响, 对实验鱼的饲料效率影响显著, FPH-A₁ 组牙鲆幼鱼饲料效率最高。各实验组牙鲆幼鱼的消化率差异显

著, 摄食添加水解鱼蛋白饲料的牙鲆幼鱼干物质消化率提高, FPH-A₁ 组实验鱼干物质消化率最高, 显著高于对照 FM 组($P < 0.05$); 蛋白质消化率也是 FPH-A₁ 组实验鱼最高, 显著高于其他各组($P < 0.05$), FPH-A₂ 组和 FPH-B 组实验鱼蛋白质消化率低于 FPH-A₁ 组

表 5 水解鱼蛋白对牙鲆饲料利用的影响(平均值±标准差)
Tab. 5 The effects of fish protein hydrolysate on feed utilization of juvenile flounder (*Paralichthys olivaceus*)(Mean ± SE)

饲料利用 Feed utilization (%)	组别 Group			
	FM	FPH-A ₁	FPH-A ₂	FPH-B
摄食率 Feeding rate	1.08±0.07	1.09±0.09	1.22±0.08	1.18±0.14
饲料效率 Feed Efficiency	70.84±2.13 ^{ab}	84.18±2.45 ^b	63.61±5.87 ^a	80.13±6.74 ^b
干物质的消化率 Apparent digestibility coefficient of dry matter	48.16±0.88 ^a	52.23±0.11 ^b	50.13±0.68 ^{ab}	50.57±1.03 ^{ab}
蛋白质的消化率 Apparent digestibility coefficient of protein	80.96±0.75 ^a	85.54±0.24 ^c	83.46±0.33 ^b	82.98±0.59 ^b
蛋白质效率 Protein efficiency ratio	1.56±0.05 ^{ab}	1.76±0.05 ^a	1.36±0.13 ^b	1.73±0.15 ^a
蛋白质沉积率 Protein retention efficiency	27.28±0.72 ^a	38.81±2.24 ^b	25.80±4.15 ^a	32.52±1.43 ^{ab}

($P<0.05$)，但显著高于对照 FM 组($P<0.05$)。

饲料中添加不同分子量不同替代水平水解鱼蛋白显著影响牙鲆幼鱼的蛋白质效率，FPH-A₁ 组实验鱼蛋白质效率最高，显著高于 FPH-A₂ 组实验鱼($P<0.05$)，与其他各组差异不显著($P>0.05$)。蛋白质沉积率各组实验鱼差异显著，FPH-A₁ 组牙鲆蛋白质沉积率最高，显著高于 FPH-A₂ 组和对照组($P<0.05$)，与 FPH-B 组实验鱼差异不显著($P>0.05$)。

3 讨论

研究表明，植物蛋白源与鱼粉在某些低分子量氮化合物成分上有着显著差异，比如游离氨基酸、牛磺酸、鹅胱肽和核苷酸等^[10]，使用植物蛋白源替代鱼粉也就造成了饲料中这些成分存在差异，进而影响了鱼类的生长和健康^[11, 12]，这被认为是肉食性鱼类利用植物蛋白源差的部分原因。因此，本研究评价了高植物蛋白饲料中添加低分子量的海洋鱼肉水解物对牙鲆幼鱼生长和饲料利用的影响。

水解鱼蛋白主要是各种肽和少量游离氨基酸的混合物^[6]。已有的大多数关于饲料中水解鱼蛋白的研究发现，在一定范围内添加水解鱼蛋白可以提高鱼类的生长性能和饲料利用，但超过这一范围会带来负面影响^[13, 14]。较高水平的水解蛋白带来实验鱼生长性能的下降被解释为游离氨基酸、多肽及蛋白质混合物的比例不平衡，导致吸收时间不一致，而影响了氨基酸的利用造成的^[13]。在本研究中，3.7% 的水解鱼蛋白替代鱼粉后提高了牙鲆幼鱼的生长，特别是富含低分子量组分的 FPH-A 替代鱼粉后实验鱼的特定生长率显著高于对照组。各实验处理组牙鲆的摄食率没有显著差异，因此，生长的差异不是由于饲料的适口性造成的。FPH-A 的主要组分分子

量在 0.1—1 kD 之间，分子量小于 1 kD 的肽称为寡肽^[15]。寡肽对水生动物的促生长作用在其他研究中也有报道。雷光高等^[16]报道牙鲆幼鱼饲料中添加 1% 的小肽制品可显著提高实验鱼的增重率。冯键等^[17]报道了在南美白对虾日粮中添加 2% 的虾肽可显著改善植物蛋白的适口性，提高南美白对虾对大豆蛋白的消化吸收功能，达到与鱼粉组相同的养殖效果。柳旭东等^[18]报道饲料中添加水解鱼蛋白可以显著提高半滑舌鳎仔稚鱼的存活率和生长性能。

现代蛋白质营养理论认为，寡肽作为蛋白质的主要消化产物，在氨基酸消化、吸收和代谢中起着重要作用。寡肽可以和游离氨基酸一样被肠黏膜吸收并转运进入血液循环。与游离氨基酸吸收相比，寡肽转运系统具有转运速度快、耗能低、不易饱和，且各种肽之间转运无竞争性与抑制性的特点^[19]。寡肽与氨基酸相互独立的吸收机制，有助于减轻由于游离氨基酸相互竞争共同吸收位点而产生的吸收抑制，而且寡肽的迅速吸收及其继之而产生的机体内分泌变化可能影响动物不同组织蛋白质代谢。

在本实验中添加水解鱼蛋白显著提高了牙鲆鱼体粗蛋白含量、蛋白质消化率、蛋白质效率和蛋白质沉积率，尤其是添加 3.7% 水解鱼蛋白产品 A 的实验组，效果最为明显。草鱼饲料中添加 0.25% 与 1.00% 的虾肽蛋白后干物质消化率和蛋白质消化率显著提高^[8]。王家林等^[20]报道了在饲料中添加一定比例的蛋白寡聚肽替代鱼粉，鲈鱼的特定生长率和蛋白沉积率显著增长。Espe, et al.^[21]报道 15% 的水解鱼蛋白替代鱼粉可以显著改善大西洋鲑幼鱼和成鱼的生长，并通过对血清游离氨基酸和肌肉示踪赖氨酸的检测，推测生长的改善是由于水解鱼蛋白改善了实验鱼的蛋白代谢率和蛋白沉积率。大量试验

研究表明, 当以寡肽形式作为氮源时, 整体蛋白质沉积高于相应的游离氨基酸日粮或完整蛋白质日粮^[22]。寡肽吸收机制使得氨基酸的吸收比降解为游离氨基酸再吸收更快, 从而提高动物对蛋白质的利用率^[23]。

目前, 蛋白质原料的短缺和价格高涨已成为制约水产养殖业和饲料业发展的瓶颈之一, 从长远来看, 提高饲料蛋白质的利用率是解决饲料成本高的主要措施之一。在提高蛋白质利用率这一领域中的一个微小进步, 就可以大幅提高养殖业和饲料业的经济效益, 而且减少氮的排泄, 减轻对环境的污染^[24]。综上所述, 在高植物蛋白饲料中, 添加水解鱼蛋白, 特别是低分子量的水解鱼蛋白, 可显著提高牙鲆幼鱼的生长性能以及饲料蛋白质消化率、蛋白质效率和蛋白沉积率。

参考文献:

- [1] Morris P C, P Gallimore, J Handley, et al. Full-fat soya for rainbow trout (*Oncorhynchus mykiss*) in freshwater: Effects on performance, composition and flesh fatty acid profile in absence of hind-gut enteritis [J]. *Aquaculture*, 2005, **248**: 147—161
- [2] Opstvedt J, Aksnes A, Hope B, et al. Efficiency of feed utilization in Atlantic salmon (*Salmo salar* L.) fed diets with increasing substitution of fish meal with vegetable proteins [J]. *Aquaculture*, 2003, **221**: 365—379
- [3] Kotaro Kikuchi. Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder (*Paralichthys olivaceus*) [J]. *Aquaculture*, 1999, **179**: 3—11
- [4] Asche G L, Lewis A J, Peo E R Jr. Protein digestion in weanling pigs: effect of dietary protein source [J]. *Journal of Nutrition*, 1989, **19**: 1093—1099
- [5] Aksnes A, Hope B, Jonsson E, et al. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (*Oncorhynchus mykiss*) fed high plant protein diets. I: Growth, growth regulation and feed utilization [J]. *Aquaculture*, 2006, **261**(1): 305—317
- [6] Zambonino Infante J L, Cahu C L, Peres A. Partial substitution of di- and tripeptides for native proteins in sea bass diet improves *Dicentrarchus labrax* larval development [J]. *The Journal of Nutrition*, 1997, **127**(4): 608—614
- [7] Refstie S, Olli J J, Standal H. Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (*Salmo salar*) in response to graded levels of fish protein hydrolysate in the diet [J]. *Aquaculture*, 2004, **239**: 331—349
- [8] Feng J, Jia G, Yang C P. The effect of small peptides in hydrolytic fish meal on growth performance of grass carp, *Ctenopharyngodon idella* [J]. *Journal of Fisheries of China*, 2005, **29**(2): 222—226 [冯健, 贾刚, 杨长平. 鱼粉水解物中小肽对幼龄草鱼生长性能的影响. 水产学报, 2005, **29**(2): 222—226]
- [9] Boza J J, Jiménez J, Matínez O, et al. Nutritional value and antigenicity of two milk protein hydrolysates in rats and guinea pigs [J]. *Journal of Nutrition*, 1994, **124**: 1978—1986.
- [10] Aksnes A. Feed ingredients. The impacts of nitrogen extractives in aqua feed ingredients [J]. *International Aquafeed*, 2005, **8**: 28—30
- [11] Stapleton P P, Charles R P, Redmon H P, et al. Taurine and human nutrition [J]. *Clinical Nutrition*, 1997, **16**: 103—108
- [12] Burrells C, William P D, Southage P J. Dietary nucleotides: a novel supplement in fish feeds 2. Effects on vaccination, salt water transfer, growth rate and physiology of Atlantic salmon [J]. *Aquaculture*, 2001, **199**: 171—184
- [13] Hevrøy E M, Espe M, Waagbo R, et al. Nutrient utilization in Atlantic salmon (*Salmo salar* L.) fed increased levels of fish protein hydrolysate during a period of fast growth [J]. *Aquaculture Nutrition*, 2005, **11**: 301—313
- [14] Aksnes A, Hope B, Hostmark O, et al. Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, *Gadus morhua* [J]. *Aquaculture*, 2006, **261**: 1102—1110
- [15] Wang J F, Yue G W. Application of small peptides in animal nutrition [J]. *Feed Industry*, 2006, **27**(7): 9—11 [王建峰, 乐国伟. 小肽在动物营养中的应用. 饲料工业, 2006, **27**(7): 9—11]
- [16] Lei G G, Ye J D, Song B B, et al. Effects of small peptides on the growth performance, digestive enzyme activities and oxidation resistance of *Paralichthys olivaceus* [J]. *Journal of Aquaculture*, 2008, **29**(3): 1—3 [雷光高, 叶继丹, 宋奔奔, 等. 小肽对牙鲆幼鱼的生长、消化酶活性及肝脏抗氧化能力的影响. 水产养殖, 2008, **29**(3): 1—3]
- [17] Feng J, Wang M P. Effects of feeding stimulant-shrimp peptides on growth performance of *Peneaus vannamei* fed plant protein-based diet [J]. *Marine Sciences*, 2004, **28**(4): 48—51 [冯健, 王明鹏. 虾肽诱食剂改善南美白对虾植物蛋白日粮的作用. 海洋科学, 2004, **28**(4): 48—51]
- [18] Liu X D, Liang M Q, Zhang L M, et al. Effect of fish protein hydrolysate levels on growth performance and biological and physiological parameters in tongue sole post-larvae [J]. *Acta Hydrobiologica Sinica*, 2010, **34**(2): 242—249 [柳旭东, 梁萌青, 张利民, 等. 饲料中添加水解鱼蛋白对半滑舌鳎稚鱼生长及生理生化指标的影响. 水生生物学报, 2010, **34**(2): 242—249]
- [19] Addison J M D, Matthews D M, et al. Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum in vitro [J]. *Clinical Science*, 1972, **43**(6): 907—911
- [20] Wang J L, Liang M Q, Chang Q. The effects of protein peptide in the diets on protein digestibility coefficient and retention of sea bass (*Lateolabrax japonicus*) and rat [J]. *Marine Fisheries Research*, 2006, **27**(5): 68—73 [王家林, 梁萌青, 常青. 饲料中蛋白寡聚肽对鲈鱼和小白鼠蛋白消化率和

蛋白沉积率的影响. 海洋水产研究, 2006, 27(5): 68—73]

[21] Espe M, Sveier H, Hogoy I, et al. Nutrient absorption and growth of Atlantic salmon (*Salmo salar* L.) fed fish protein concentrate [J]. *Aquaculture*, 1999, 174: 119—137

[22] Boza J J. Protein v. enzymic protein hydrolysates. Nitrogen utilization in starved rats [J]. *British Journal of Nutrition*, 1995, 73: 65—71

[23] Miyauchi Seiji, Elangovan Gopal, Santosh V, et al. Differen-

tial modulation of sodium-and chloride-dependent opioid peptide transport system by small non-opioid peptides and free amino acids [J]. *The Journal of Pharmacology and Experimental Therapeutics*, 2007, 321(4): 257—264

[24] Gilbert E R, Wong E A, Jr Webb K E. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health [J]. *Journal of Animal Science*, 2008, 86(9): 2135—2155

INCLUSION OF SIZE-FRACTIONATED FISH PROTEIN HYDROLYSATE IN HIGH PLANT PROTEIN DIETS FOR JAPANESE FLOUNDER, *PARALICHTHYS OLIVACEUS*

ZHENG Ke-Ke, LIANG Meng-Qing, YAO Hong-Bo, CHANG Qing and WANG Jia-Lin

(Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China)

Abstract: In the last decade, the increasing demand, price and world supply fluctuations of fish meal has emphasized the need to look for alternative protein sources in aquafeeds. Increased use of protein of plant origin and better use of available marine protein sources are important issues in this respect. The total volumes of by-products from the seafood industry are significant and could become valuable ingredients in feed for carnivorous fish species. Processing of fish hydrolysate from the by-products is applicable and these products are relevant as ingredients for fish feed. The present experiment was carried out to evaluate fish protein hydrolysate as feed ingredient in high plant protein diets for Japanese flounder (*Paralichthys olivaceus*). Fish protein hydrolysate was produced from Pollack (*Pollachius pollacbius*) by enzymatic treatment. The fish hydrolysate was size fractionated by filtration. Fish protein hydrolysate product A (FPH-A) was the permeate sample after filtration. Fish protein hydrolysate product B (FPH-B) was the non-filtrated sample. Japanese flounder juvenile were fed with diets containing 1.2% and 3.7% fish protein hydrolysate in a continuous flow system. The growth experiment lasted for 60 days. The results showed that fish protein hydrolysate improved the growth of Japanese flounder. Specific growth rates of fish fed with 3.7% FPH-A was the highest. There were no significant differences in feeding rate of flounder. Crude protein composition of fish fed with 3.7% FPH-A was significantly higher than fish fed with control diet (fish meal). Fish protein hydrolysate significantly improved protein digestibility, protein retention and protein utilization of flounder juvenile. Fish fed with 3.7% FPH-A had the highest protein digestibility, protein retention and protein utilization. In conclusion, small molecular weight compounds from fish protein hydrolysate may successfully be used as protein source in high plant protein diets for Japanese flounder in exchange of fish meal.

Key words: Fish protein hydrolysate; Plant protein; Japanese flounder; Growth; Feed utilization