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Abstract: The effect of dietary protein and starvation on the expression of trypsin was evaluated in the Chinese

sucker (Myxocyprinus asiaticus Bleeker). The complete trypsin cDNA was cloned from juvenile Chinese sucker

pancreatic tissue by using RACE and PCR methods. We used semi-quantitative RT-PCR and enzymatic activity

measurements to quantify mRNA expression and trypsin activity in fish that were either starved or fed differing

levels of dietary casein (35%, 45% and 55%). The results showed that the Chinese sucker trypsin cDNA sequence

was 912 bp in length. Trypsin activity and mRNA levels were higher in fish that were fed moderate (45% casein)

levels of protein than those that were fed high or low levels. Starvation significantly decreased mRNA expression

level and trypsin activity. The changes in trypsin activity tended to lag behind the changes in mRNA levels. There

was no direct relationship between the trypsin activity and mRNA level. Given this, the trypsin synthesis is a

complex process regulated by a balance of several factors in the Chinese sucker.
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Trypsin (EC 3.4.21.4) is an enzyme secreted by the
pancreas to digest dietary protein, which play a key role
in growth regulation in Atlantic salmon (Salmo salar)"
and Atlantic cod (Gadus morhua) . Trypsin genes have
been identified and characterized in many teleosts spe-
cies, including Atlantic salmon', Japanese flounder
(Paralichthys olivaceus) ™, Atlantic Cod ¥, and winter
flounder (Pleuronectes americanus) '°.

The measurement of digestive enzymes, such as
trypsin, provides an insight into the nutritional status of
teleosts'”*!. The effects of starvation and dietary protein
levels on trypsin activity are variable in fish. Some stud-
ies have shown that trypsin activity was affected by star-
vation ! and dietary protein levels ', while others have
found no effect !, It has been found that fasting induced
a significant decrease in trypsin activity in Adriatic stur-
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geon (Acipenser naccarii) "* and tilapia (Oreochromis

mossambicus) '*!. In contrast, trypsin activity increased
significantly in Atlantic salmon''* and rainbow trout
(Oncorhynchus mykiss)'® during the early period of
starvation.

The changes in trypsin activity are likely mediated
at the gene transcriptional level. Researches in crusta-
ceans have shown that dietary protein levels and starva-
tion significantly alter #ypsin mRNA levels!'> '*). How-
ever, few studies have evaluated the effect of dietary
protein levels and starvation on frypsin mRNA expres-
sion in fish. Wang, et al. '" reported that #rypsin mRNA
levels were influenced by dietary protein in yellow cat-
fish (Pelteobagrus fulvidraco). In contrast, dietary pro-
tein had no effect on #ypsin mRNA levels in sea bass
(Dicentrarchus labrax) larvae "', The effect of starva-
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tion on trypsin mRNA level has received some attention
in marine fish, such as Atlantic salmon"*, Japanese
flounder!'” and yellowtail ', However, there is little
information on the response in freshwater fish.

The Chinese sucker (Myxocyprinus asiaticus,
Bleeker) distributes in the upper reaches of the Yangtze
River and is the only member of the family Catostomidae
in Asia. The Chinese sucker is popular as commercial
culture species and pet. Despite its potential importance,
little is known about the nutritional physiology of this
species.

Our objective was to determine the effects of die-
tary protein and starvation on the trypsin enzyme of the
Chinese sucker. We cloned the complete trypsin cDNA
from juvenile Chinese sucker pancreatic tissue. We then
measured trypsin activity and mRNA levels in fish that
were either starved or fed diets containing 35%, 45% or
55% casein.

1 Materials and methods

1.1 Experimental fish and diets

We obtained Chinese suckers with weight of (23.3 =
2.1) g from the Chongqing Wanzhou Fisheries Research
Institute. The fish were held in 15 rectangular glass tanks
(1.1 mx0.5 mx0.55 m, 50 fish per tank). The tanks were
persistently aerated using an air pump. The fish were
held at 24-25°C under a 12h light: 12h dark photoperiod
(light between 09:00 and 21:00) and fed a commercial
diet (with 36% protein content, Tongwei Group Co., Ltd.,
China). After 4 weeks acclimation to the tanks, the fish
were divided into five treatment groups. Each treatment
group consisted of three replicate tanks. Three groups
(T1-T3) were fed with diets that contained different lev-
els of casein (55, 45, and 35%, respectively; Tab. 1). The
fourth group (TF) was fasted and a control group (TC)
was fed with the commercial formula. The fish were fed
twice daily (08:00 and 17:00).
1.2 Sampling

We randomly netted 15 fish from each group (5 fish
per tank) prior to administering the morning food supply
on days 0, 5, 10, 15, 20, 25 and 30. The fish were anes-
thetized and sacrificed with a sharp blow to the head
immediately. The pancreatic tissue and the complete in-
testine were dissected from each fish. The pancreatic
(=50 mg) for cloning of trypsin cDNA sequences and
RNA preparation was snap frozen in liquid nitrogen and
the intestine with the remained pancreas for trypsin ac-
tivity was washed in sodium chloride before frozen in
liquid nitrogen. All samples were then stored at —80°C
until being used.
1.3 Molecular cloning and analysis of trypsin cDNA

sequencing

Total RNA was extracted by RNAiso Reagent
(D9108B, TAKARA, Japan), quantified by a Smart

Tab. 1 Formulation and proximate analysis of the experimental
diets

Ingredients (in %)” T1 T2 T3
Casein ® 55.0 45.0 35.0

a-Starch 17.0 17.0 17.0

Dextrin 16.0 16.0 16.0
Microcrystalline Cellulose 3.0 13.0 23.0
Colza oil 6.0 6.0 6.0

Vitamin mixture ° 1.5 1.5 1.5
Mineral mixture ¢ 1.5 1.5 1.5

a. Dietary ingredients were obtained from commercial suppliers.
Casein, Starcand, dextrin, a-Starch and Microcrystalline Cellulose were
from Si Chuang Xilong Chemical Co., Ltd (China). The colza oil was
from Chongqing supermarket; b. casein was the only resource of pro-
tein; c. Per kg of vitamin mix: retinyl acetate 1g; cholecalciferol 2.5 mg;
all-rac-a-tocopherol acetate 10 g; menadione 1 g; thiamin 1 g; ribofla-
vine 0.4 g; D-calcium pantothenate 2 g; pyridoxine HCl 0.3 g;
cyanocobalamin 1 g; niacin 1 g; choline chloride 200 g; ascorbic acid
20 g; folic acid 0.1 g; biotine 1 g; meso-inositol 30 g; d. Per kg of min-
eral mix!"”; KCI 90 g; KI 40 mg; CaHPO,-2H,0 500 g; NaCl 40 g;
CuSO,5H,0 3 g; ZnSO47H,0 4 g; CoSO4-;H,0 20 mg; FeSO4-7H,0
20 g; MnSO4-H,0 3 g; CaCO5 215 g; MgSO,7H,O 124 g; NaF 1 g

Spec™ Plus Bioanalyzer (Bio-Rad, USA) and reversely
transcribed using oligo (dT),g primers and RevertAid™
M-MuLV Reverse Transcriptase (MBI Fermentas, Can-
ada, EP0442) following the manufacturer’s instructions.
A 750 bp core cDNA fragment was amplified by nested
PCR (YPF2 and YPR2 for the nested amplification) in
following cycles parameters: 94°C for 30s, 55°C for 45s,
72°C for 60s. PCR products were resolved on 1.0% aga-
rose gel and stained with ethidium bromide to visualize
the bands. Target fragments were purified using an Axy-
gen Gel Extraction Kit (Axygen, USA), cloned into a
pMD-19T vector (TAKARA, Japan), and sequenced by
company (Shanghai Sangon, China). Gene-specific
primers for 3'RACEand 5’RACE were designed based
on obtained sequence. 5’ end was obtained using a 5'-full
RACE Kit (TAKARA, Japan D6122) and semi-nested
PCR (5'-YA1l and 5'-YS1 for the first amplification,
5'-YA1 and 5’-YS2 for the semi-nested amplification) in
the cycles setting: 94°C for 30s, 57°C for 45s, 72°C for
60s. 3’ end was acquired using a 3'-full RACE Kit
(TAKARA, Japan, D6121) and nested PCR (3’-F2 for the
nested amplification) in following cycles profile: 94°C
for 30s, 55°C for 45s, 72°C for 60s. Full-length cDNA
amplification was performed using nested PCR (LF2 and
LR2 for the nested amplification) in following cycles
profile: 94°C for 30s, 60°C for 45s, 72°C for 90s. All
PCR was carried out in a TECHNE thermal cycle (UK,
TC-512), first denaturated at 94°C for 3min, amplified
for 35 cycles and finally extended for 10min at 72°C.
Tab. 2 contained a list of all the primers used in the
study.
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Tab.2 Primers sequences used in the study

Primer name Sequence Purpose
YPF1 5'- GGCTTTCATTCTTCTGGCTCGTT -3’
YPF2 5'- CTTCTGT (C) GGA (TG) GGCTCC (T) CTG -3’ ¢DNA fragment PCR
YPR1 5'- GCTTAGTTGGAGTTGATGGTGCT -3’
YPR2 5'-CCAG (A) GAC (G) ACAAT (GC) ACCCTG-3'
3"-F1 5"-TCTAATGTGCCTGTGGGCTCCTA-3' .
3-F2 5-TGGCTTCTTGGAGGGCGGCAAG-3' FRACE
RTYP 5'- TAACTGTTCAGGGTG -3’
5'-YA1 5'- AGCGAACAGAGCCAGAAGAA -3’ ,
5-YS1 5'- CTCTGGGTCGTGTCTGCTGC -3’ SRACE
5-YS2 5'- GCGTCTTGGTGAGCATAACA -3’
LF1 5-TTGACGTCTCTGGGGGCACCGAG-3'
LF2 5'-GGATCCATGAAGGCTCTCATTCTTCTGGC-3'
LR1 5-AGTTTTAACTCAAACATTTATTTG-3' Full-length cDNA amplification
LR2 5'-GCGGCCGCTTAATTGGAGTTAATGGTGTTT -3’

SeniQ-TrypsinF1
SeniQ-TrypsinR1
B-actin-F
B-actin-R

5-CATTCTTCTGGCTCTGTTCGC-3'
5'-AGCCCACAGGCACATTAGACG-3'
5'-GCCCATCTATGAGGGTTAC-3'

5'- GAGGGCAAAGTGGTAAACG -3’

Semi-quantitative RT-PCR

Semi-quantitative RT-PCR

1.4 Semi-quantitative RT-PCR analysis

Total RNA was extracted and quantified following
the method described in 2.3 and treated with DNase I
(RNase-free) (Promega, USA, M610A) to eliminate ge-
nomic DNA. Reverse transcription based on 5 pg of total
RNA was performed using a RevertAid™ M-MuLV Re-
verse Transcriptase kit (MBI Ferments, Canada, EP0442)
following the manufacturer’s protocol and 0.5 pL cDNA
was used as template for amplification. PCR was con-
ducted with SeniQ-TrypsinF1 and SeniQ-TrypsinR1
primers (Tab. 2) and following parameters: initial dena-
turation at 94°C for 3min, followed by 35 cycles of am-
plification (denaturation for 30s at 94°C, annealing for
30s at 57°C, extension for 60s at 72°C) and a 10min final
extension at 72°C. The housekeeping gene S-actin (30
cycles) was amplified to serve as a reference using 0.5
pL cDNA as templet and primers f-actin-F and S-actin-
R (Tab. 2), which were designed based on the sequence
for zebrafish (GenBank accession No. AF057040) in
following thermal profile: denaturation at 94°C for 3min,
followed by 30 cycles of amplification (94°C for 30s,
56°C for 30s, and 72°C for 60s) and a 10 min final ex-
tension at 72°C. 8 puL PCR products were resolved in
1.0% agarose gels and gels were stained with ethidium
bromide to visualize the bands. The bands were analyzed
using the image analysis software Quantity One
(Bio-Rad, USA). Adjusted volume (measured volume of
band minus the background volume) of every band (lane)
in a gel picture was measured with an identical volume
rectangle tool. Relative trypsin mRNA expression level

was expressed as the adjusted volume ratio of trypsin /
S-actin. All experiments were performed three times.
1.5 Determination of trypsin activity

Trypsin activity was measured following the de-
scription® using TAME as a substrate. The published
enzyme solution (20 pL) was mixed with 3.0 mL TAME
solution (1 mM TAME in 10 mM Tris—HCI buffer, pH
8.0). The mixture was then incubated at 30°C for 20min.
We measured production of p-tosyl-arginine by monitor-
ing the increase in absorption at 247 nm. One unit of
activity was defined as the amount on trypsin required to
generate an increase in absorption of 0.001 per minute at
247 nm. All experiments were performed in triplicate.
1.6 Data analysis

Data were expressed as the mean + SD. We used

ANOVA to compare mRNA levels and trypsin activity
among the treatment groups. All statistical analysis were
performed by using GraphPad Prism 5 (GraphPad Soft-
ware, San Diego, USA). Differences were considered to
be statistically significant when P<0.05.

2 Results

2.1 Trypsin cDNA sequence

The RACE and PCR yielded a 921 bp trypsin
cDNA. The cDNA fragment contained a 47 bp 5'untrans-
lated region, a 133 bp 3'untranslated region, and a 741 bp
open reading frame (ORF). The initiation codon ATG
was located at positions 48—50 and the stop codon TGA
was at positions 788—790. The canonical polyadenylation
signal (AATAAA) was located 16 bp upstream of the
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poly (A) tail (GenBank accession No. EF493027) (Fig.
D).

2.2 Effect of dietary protein on trypsin activity and

mRNA expression

There was no significant difference in trypsin activity
among the treatment groups during the first two sam-
pling periods (Fig. 2A). However, diet had a significant
effect on trypsin activity during the last 20 days of the

experiment (Fig. 2A). Trypsin activity was the lowest in
the fish that were fed a diet containing 55% casein (T1
group) from day 10. Trypsin activity was significantly
higher in T2 group than T3 group on days 20, 25, and 30.

The level of dietary protein also had a significant
effect on trypsin mRNA levels in the Chinese sucker (Fig.
2B). Trypsin mRNA levels were significantly higher in
T2 group than in those fish that were fed more (T1 group)
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Nucleotide sequence encoding the trypsin gene and the deduced amino acid sequence of Chinese sucker (Chinese sucker)

The amino acid sequence is given below the nucleotide sequence. The nucleotides and amino acids are numbered along the upper and lower margins,
respectively. The start (ATG) and stop (TAA) codons are indicated by the overstrike. The signal peptide is underlined and the activation peptide is
underlined with a wave line. The activation peptide cleavage site is marked with an arrowhead. Residues of the catalytic triad (His63, Asp107, Ser200)
are indicated by the box. The amino acid (Asp194) at the bottom of the substrate pocked is shadowed. Cysteine residues are marked by numbers. The
nucleotides and amino acids are numbered along the upper and lower margins, respectively
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or less (T3 group) dietary protein. The trypsin mRNA increased in the first 20 days in the T3 group then de-
level was significantly higher in T1 group than T3 group creased during the last 10 days.

on day 5, but significantly lower on day 10. There was Trypsin mRNA levels increased significantly in T2
no significant difference in trypsin mRNA levels be- group during the first 5 days, then stabilized and re-
tween T1 group and T3 group at any other time. mained at a relatively high level for the duration of the

Trypsin activity changed significantly throughout experiment (Fig. 3B). Trypsin mRNA levels markedly
the experiment in all treatment groups (Fig. 3A). Trypsin decreased in both T1 and T3 groups during the first 10

activities increased steadily in the T2 group but de- days. Following this period, the changes in mRNA levels
creased in the T1 group. Conversely, trypsin activities were less rapid. In the T1 group, the levels increased
Adrcamn
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Fig. 2 A, Trypsin activity (AA247nm/min-mg) of juvenile Chinese sucker fed diets containing 55, 45, and 35% dietary casein (T1, T2 and T3,
respectively). Each bar represents the mean + SD of 3 fish. B, Trypsin mRNA expression of juvenile Chinese sucker fed diets containing 55%, 45%,
and 35% dietary casein (T1, T2 and T3, respectively). Fifteen bar represents the mean + SD of fifteen fish. Bars that have different lower-case super-
scripts in the same day are significantly different (P < 0.05)
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Fig. 3 A, Time-course of the changes in trypsin activity (A A247nm/min-mg) in juvenile Chinese suckers fed diets containing 55%, 45% and 35%
dietary casein (T1, T2 and T3, respectively). B, Time-course of the changes in #rypsin mRNA expression in juvenile Chinese suckers fed diets containing
55%., 45% and 35% dietary casein (T1, T2 and T3, respectively). Each point represents the mean + SD of fifteen fish. Points that have different lower-case
superscripts in the same diet (treatment) are significantly different (P < 0.05), the former lower-case separated by slash for T1 group and the later for T3
group
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between days 10 and 20 then decreased between days 20

and 25. Conversely mRNA levels decreased between

days 10 and 20 in T3 group before increasing after day

20. In both T1 and T3 groups, the mRNA levels in-

creased significantly between days 25 and 30.

2.3 Trypsin mRNA expression and enzymatic activi-
ties under food deprivation

Trypsin mRNA level was significantly higher in the
starved fish relative to the control group on day 5 (Fig.
4B). However, there was no significant difference in
trypsin activity among these two groups at this time (Fig.
4A). In contrast, both trypsin activity and mRNA levels
were significantly lower in the TF group relative to the
controls at all time points after day 10.

Trypsin mRNA levels increased rapidly during the
first 5 days in the fasted group. However, the levels de-
creased to half the starting value at day 10 and remained
constant thereafter (Fig. 4B). Trypsin activity decreased
significantly during the first fasted 15 days of the ex-
periment (Fig. 4A). After this initial period, trypsin ac-
tivity increased sharply between days 15 and 20, then
decreased again during the remainder of the experiment.

3 Discussion

Trypsin activity and trypsin mRNA levels were sig-
nificantly higher in Chinese sucker that were fed a mod-
erate protein diet than those that were fed lower or higher
levels of protein (Fig. 2A and B). Furthermore, the pat-
tern of the response was similar for both indices, sug-
gesting that trypsin gene expression is regulated by the
level of dietary protein in certain extent in Chinese
sucker, at least at the transcriptional level. Increased pro-
tease activity due to increases in the level of dietary pro-

A32 -
-;24 -
E\
216F
- TF
< TC
8 1 1 1 _I 1 _I 1
0od 5d 10d 15d 20d 254 30d

Days

tein has been reported in yellowtail (Seriola quinquera-
diata) ®Y, catfish (Clarias batrachus x Clarias garie-
pinus) *2, and Asian sea bass (Lates calcarifer) **). The
increase in enzyme specific activity was associated with
an increase in mRNA levels in yellow catfish ''”! and the
Chinese mitten crab (Eriocheir sinensis) ). This regu-
latory mechanism allowed the organism to regulate tryp-
sin synthesis at a level that was appropriate for the pro-
tein content of a meal, improving the efficiency of pro-
tein digestion.

Interestingly, trypsin activity and trypsin mRNA
levels were significantly lower in the Chinese suckers
that were fed a very high protein (55% casein) diet rela-
tive to those fed lower levels. This is consistent with the
response in crustaceans, such as the white shrimp
(Penaeus vannamei) ', Our results suggested that the
inhibition of trypsin specific activity at high levels of
dietary protein was likely related to inhibition of trypsin
synthesis. This may be caused by an excess of amino
acids. Alternatively, activity may be inhibited by the
upregulation of pancreatic secretory trypsin inhibitors,
which may also be controlled by dietary protein lev-
elst**],

We did not observe any changes in trypsin activity
associated with the treatments during the first five days
of the experiment. This is consistent with reports in other
aquatic animals, including Chinese mitten crab juvenil-
es " and larval red drum (Scigenops ocellatus) *°.
During the first days, the fish would be able to digest
trial food with the same effectiveness as in a state of
continual feeding. Our results suggested that the Chinese
sucker may require several days to adapt to a new diet.

The timing of changes in trypsin activity tended to

B 24r
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Fig. 4 A, Changes in trypsin activity (A A247nm/min-mg) in fasted (TF) or control (TC) groups of Chinese suckers. The control group was fed a
commercial formula containing 36% protein. B, Changes in trypsin mRNA expression in fasted (TF) and control (TC) groups of Chinese suckers. The
control group was fed a commercial formula containing 36% protein. Each point represents the mean + SD of fifteen fish. Points within a treatment
group that have different lower-case superscripts are significantly different (P < 0.05). Points that are significantly different (P< 0.05) between TF and

TC are indicated with “*”
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lag behind the changes in mRNA levels. This lag sug-
gested that trypsin activity was regulated by multiple
mechanisms. Trypsin synthesis was a complex process.
Pretrypsinogen, precursor of trypsin, was synthesized in
pancreatic acinar cell. After removal of the signal peptide,
it became trypsinogen and being stored within secretory
granules. It was secreted into the pancreatic duct and
ultimately into the duodenum, where trypsin was acti-
vated into the mature form by enterokinase®. Pre-
trypsinogen synthesis may be regulated during pretrans-
lation®®” or both transcription and translation!'" ', The
regulation may occur at any of several stages, for exam-
ple, during the synthesis or posttranslational modification
of pretrypsinogen, or during the targeting, transport, or
activation of trypsinogen. Moreover, some mRNA was
never translated into protein. The translational efficiency
of eukaryotic mRNAs was dependent on sequence char-
acteristics'®®!. Furthermore, the activity of trypsin may be
regulated by activation of trypsin from trypsinogen by
enterokinase.

Starvation significantly increased mRNA transcrip-
tion during the first 5 days (Fig. 4B). Other researchers
have reported similar results in yellowtail'™ and white
shrimp®”). An increase in mRNA levels in response to a
protein-scarce diet was an adaptive process that was cru-
cial to the survival of the organism during periods of
protein deprivation. At beginning of starvation, Chinese
sucker should keep highly alerted for efficient digestion
of food at all times. To maintain digestion efficiency
during this time, trypsin was accumulated in pancreatic
tissue and trypsin mRNA levels increased to promote
enzyme synthesis.

Trypsin mRNA levels decreased rapidly after day 5
before levelling and remained constant for the remainder
of the starvation experiment (Fig. 4B). These changes
most likely reflected the sensitivity of Trypsin mRNA
transcription to substrate availability. The decline in
Trypsin mRNA levels may also conserve energy that was
formerly allocated to trypsin synthesis’®. This was a
useful strategy for minimizing the effects of starvation.
In the other hand, at the first 5 days, excessive trypsin
accumulated in the pancreatic tissue. Trypsin synthesis
seemed to be accelerated after trypsin secretion from
pancreatic tissue and decreased when trypsin accumu-
lates in the pancreatic tissue''™. Trypsin activity was the
lowest on day 15, but was still measurable, suggesting
that there was a basal level of secretion in the Chinese
sucker. A small amount of stored trypsin was released
into the lumen where it acted as a sensing mechanism. In
the presence of a protein substrate, the enzyme, either
directly or indirectly, produces a signal (possibly small
peptides or free amino acids). This signal was then am-
plified, triggering a regulatory cascade which results in
the activation of late trypsin gene(s) as well as other di-

gestive enzymes, including aminopeptidase*®!.

Interestingly, trypsin activity increased rapidly be-
tween days 15 and 20 in the starved groups. We hy-
pothesized that this was caused by changes in substrate
utilization. We speculated that the increase in trypsin
activity was caused by the conversion from lipids to pro-
teins during this period. Both total and specific protease
activity was significantly higher in starved fish, suggest-
ing that tissue protein was actively catabolised. The trend
indicated that protein was the one of principal substances
used to meet the energy requirements of starved fish
during the period”!). Enzymatic activity declined steadily
after day 20, suggesting that the animals may not have
recovered from the effects of starvation beyond this time.

In summary, trypsin activity and mRNA levels in-
creased as the level of dietary casein level increased
within the range from 35% to 45%. However, higher
levels of protein (55% casein) inhibited trypsin activity
and decreased mRNA levels. Trypsin activity and mRNA
levels were also generally lower in Chinese sucker that
were starved. The changes in trypsin activity and mRNA
levels were similar, suggesting that trypsin gene expres-
sion was altered by dietary protein levels and starvation
via transcriptional regulation. However, our results also
suggested that trypsin gene expression was regulated by
different ways including post-transcriptional regulation,
translational regulation, and posttranslational regulation.
Juvenile Chinese suckers were able to endure up to 2
weeks of nutritional deprivation without relying on en-
dogenous tissue protein. However, it appeared that be-
yond this point the fish began to utilize endogenous
tissue protein to meet their energy requirements. These
data will be useful for the culture and management of
Chinese suckers.
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