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Fig. 1 Morphology of the trichomes in three Aphanizomenon types
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Fig. 3 The change of pigment contents and specific growth rates in three Aphanizomenon types
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Tab. 1 Parameters of photosynthesis—irradiance curves for Aphanizomenon flos-aquae, A. gracile and A. issatschenkoi strains
Strains Py a Rq I 1
[ mol O,/g(DW)-min] [y mol O,/g(DW)-min] [pmol O,/g(DW)-min]  [umol photons/(m*s)]  [umol photons/(m?s)]
A. gracile 34.50+4.27 0.16+0.06 —3.15+0.21 215.62+14.30 19.68+0.66
A. flos-aquae 44.71+4.08 0.21+0.05 -3.17+0.41 212.90+15.94 15.10+£2.76
A. issatschenkoi 39.85+4.17 0.19+0.06 —3.09+0.74 209.73£32.77 16.26+6.54
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MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERISTICS AND COMMON
APHANIZOMENON TYPES IN CHINESE WATER BODIES

WU Zhong-Xing', ZENG Bo', LI Ren-Hui’ and SONG Li-Rong’

(1. Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing Key Laboratory of Plant Ecology
and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University,
Chongqing 400715, China; 2. Key Laboratory of Aquatic Biodiversity and Conservation Biology,

Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China)

Abstract: Aphanizomenon has been widely reported in many freshwater bodies, and was regarded as one of important
bloom-forming cyanobacterial strains. Owing to its effect, directly or indirectly, to animals and human beings, great
attention has been focused on the formation mechanism by researchers in areas such as, aquatic ecology, phycology,
environmental science, and so on. In China, Aphanizomenon bloom has resulted in many environmental and ecological
problems. As already illustrated, bloom-forming cyanobacteria has developed some sound ecological strategies to form
water bloom with a series of special physiological mechanisms and adaptation characters during evolution. However, the
physiological mechanisms and adaptation characters in Aphanizomenon remain largely unknown. Previous study in our
laboratory had shown that three types of Aphanizomenon, A. flos-aquae, A. gracile and A. issatschenkoi, were the most
common strains in Chinese freshwater bodies. Due to the limitation of samples and knowledge, however, the physio-
logical characters were not compared in the three-type strains so far. Therefore, in order to further explore their knowl-
edge and investigate the bloom-forming mechanism in Aphanizomenon, in the present study, their morphological and
physiological characteristics, including the ratio of length and width in vegetative cell, heterocyst and akinete, growth
rate, pigment composition, photosynthetic O, evolution, and the electron transport rate (E7R), were compared in 4.
flos-aquae, A. gracile and A. issatschenkoi. The results indicated that some morphological differences were found in the
frequency distributions for length/width ratios of vegetative cells, heterocyst, and akinetes. Among them, the most sig-
nificant difference was found in the akinetes, suggesting that the length/ width ratios of akinetes could be regarded as a
taxonomic unit in the genus Aphanizomenon. Moreover, physiological differences were also showed in three types of
Aphanizomenon. Compared with the strains of 4. flos-aquae and A. issatschenkoi, the strains of 4. gracile displayed
higher PC contents. However, the strains of 4. gracile showed significantly lower chlorophyll a, carotenoid contents,
maximum photosynthesis (P,), apparent photosynthetic efficiency (a), and maximal electron transport rates (ETR ) in
comparison with the other strains of Aphanizomenon. It suggested that the strain of 4. gracile showed lower competitive
abilities in photosynthesis when compared with the strains of A. flos-aquae and A. issatschenkoi. In addition, similar
physiological features, such as the value of P,, and ETR,,,, pigment contents and specific growth rate (1), were found in
A. flos-aquae and A. issatschenkoi. These data suggested that the three morphological strains of Aphanizomenon could
be divided into two types based on their physiological characterizations, namely, 4. gracile-type and A.
flos-aquaelissatschenkoi-type, and indicated that the strains of A. issatschenkoi might be potential bloom-formation

strains as the same as the strains of A. flos-aquae and must be played a considerate attention due to its toxicity.

Key words: Aphanizomenon; Morphological characteristic; Pigment; Photosynthesis; Physiological characteristic



