

DOI: 10.3724/SP.J.1035.2012.00379

南方鮰免疫球蛋白单克隆抗体的制备及特性

张小萍 魏 静 邱 艳

(西南大学生命科学学院, 西南大学三峡库区生态环境教育部重点实验室, 重庆 400715)

摘要:采用PEG沉淀结合Sepharose-4B柱层析法分离纯化了健康非免疫状态下南方鮰血清免疫球蛋白, 在SDS-PAGE电泳条件下血清免疫球蛋白重链和轻链的分子量分别约为77 kD和27 kD。应用杂交瘤单克隆抗体技术制备了4个南方鮰免疫球蛋白特异性的单克隆抗体细胞株, 并对这些单克隆抗体的特性进行了分析。经抗体亚级份测定, 其中IgG1有2株, IgG2a有1株, IgG2b有1株; 抗体滴度为 10^4 — 10^6 , 有三株单抗具有Western-blot反应特性, 识别南方鮰免疫球蛋白的重链。4株单抗都能特异地识别南方鮰、鮰的免疫球蛋白, 而与鲫、草鱼、罗非鱼、斑点叉尾鮰、光泽黄颡鱼血清以及水产动物常见病原菌如气单胞菌、爱德华氏菌、弧菌、柱状屈挠杆菌、沙门氏菌及大肠杆菌等无任何交叉反应。单克隆抗体F4-A12对纯化的南方鮰免疫球蛋白的检测灵敏度为31 ng。实验结果证明这些单抗具有高度特异、高度灵敏等特点, 可用于南方鮰免疫球蛋白的结构分析、免疫应答水平监测和病原诊断, 具有广阔的应用前景。

关键词: 南方鮰; 免疫球蛋白; 单克隆抗体

中图分类号: Q512⁺.2 文献标识码: A 文章编号: 1000-3207(2012)03-0379-06

免疫球蛋白(Immunoglobulin, Ig)是脊椎动物体液免疫的重要组成部分。研究表明, 鱼类在受到病原体感染或接受人工免疫后能产生抗原特异性免疫球蛋白中和抗原以及激活补体级联反应^[1]。近年来鱼类Ig的研究取得了一定成就, 目前硬骨鱼类中已经分离到的免疫球蛋白包括IgM、IgD、IgT, IgT又称为IgZ^[2,3], 其中IgM是大部分硬骨鱼类的主要免疫球蛋白。国内外对鱼类IgM进行了广泛研究, 如斑点叉尾鮰、海鲢、大西洋鳕、大西洋鲑、虹鳟、鲤、鱥、牙鲆和石斑鱼、斑马鱼等^[4]。

南方鮰(*Silurus meridionalis* Chen), 又名南方大口鮰, 隶属于鮰形目, 鮰科, 鮰属, 生长较快, 肉质细嫩, 味道鲜美, 是我国特有的广布于长江流域的一种大型经济鱼类。刘成汉^[5]首次对其进行描述, 之后国内许多学者先后对其其生物学^[6]、繁殖生物学^[7]、能量生态学^[8]和营养学^[9]等进行研究, 但对南方鮰免疫球蛋白和免疫系统的研究却从未报道。尽管南方鮰成鱼抗病能力强, 但是近年来一些细菌性

病原如嗜水气单胞菌(*Aeromonas hydrophila*)、柱状屈挠杆菌(*Flexibacter columnaris*)、荧光假单胞菌(*Pseudomonas fluorescens*)^[10]等严重制约了养殖规模、生产水平和经济效益。虽然传统的化学方法如抗生素可在短时间内抑制病菌, 但是由于病菌的抗药性和使用抗生素带来的负面影响, 这种方法不能从根本上解决问题。而利用免疫学研制疫苗进行防治则是一种高效持久的方法。基于这种认识和生产上的需求, 我们开展了南方鮰血清免疫球蛋白及其单克隆抗体的研究, 试图将单克隆抗体运用于南方鮰免疫球蛋白结构与功能的分析以及病原诊断学和免疫应答规律的研究。

1 材料与方法

1.1 材料

南方鮰由重庆合川水产学校提供, 体重约500 g/尾; 6—8周龄Balb/C小鼠小鼠购自重庆医科大学实验动物中心; 小鼠骨髓瘤细胞Sp2/0购于中国科

收稿日期: 2011-03-22; 修订日期: 2012-01-09

基金项目: 西南大学博士基金项目(SWUB2006); 重庆市自然科学基金计划项目(CSTC, 2006BB1311)资助

通讯作者: 张小萍(1974—), 女, 副教授, 博士; 主要从事鱼类免疫学研究。E-mail: zxpimmun@swu.edu.cn

学院上海生科院细胞资源中心。参考血清和菌株为本实验室保存。

1.2 主要试剂

RPMI-1640、DMEM 培养基和胎牛血清为 Gibco 产品; DMSO、PEG4000、50×HT、50×A 和 TMB (3, 3, 5, 5, 2-四甲基联苯胺)底物显色液为 Sigma 产品; 辣根过氧化物酶(HRP)标记羊抗小鼠 IgG 为北京中山生物技术有限公司产品; Mouse Monoclonal Antibody Isotyping Kit 为 Roche 公司产品。SuperSignal® West Pico 化学发光底物(PIERCE), X 光胶片(柯达), Sepharose-4B 凝胶、PEG6000 购自鼎国生物。

1.3 南方鲇免疫球蛋白的提取

取健康南方鲇尾静脉采血, 常温放置 2h 后, 冰箱 4℃过夜, 次日离心取上清液, -20℃保存备用。血清用 0.01 mol/L、pH 7.4 的 PBS 稀释 10 倍, 室温下缓慢加入聚乙二醇(PEG6000)至终浓度为 9%。4000 r/min, 10min 离心去上清, 沉淀用 9%PEG 离心洗涤 2 次, 沉淀物溶于 PBS。取 9%PEG6000 沉淀提取物进行 Sepharose-4B 柱层析。柱长 80 cm, 直径 1.6 cm。洗脱液为 PBS(0.01 mol/L, pH7.4), 流速为 0.25 mL/min。分部收集器收集 100 管, 每管 6min。经核酸蛋白仪测定 OD 值后, 收集 280nm 下的蛋白吸收峰所在管号的液体。每 5 管中各取 1 管用离心浓缩, SDS-PAGE 检测确定免疫球蛋白所在区间。合并免疫球蛋白峰值管, 离心浓缩后测定蛋白含量, -20℃保存备用。

BCA 法蛋白定量, 具体操作参见试剂盒说明(北京鼎国)。SDS-PAGE 电泳分析采用 Mini-Protein cell III 系统(BioRad), 进行变性还原条件下凝胶电泳, 5%浓缩胶, 10%分离胶。样品在浓缩胶时调电压 80V, 分离胶时加大到 100V, 电泳约 1.5h, 考马斯亮兰 R-250 染色。

1.4 BALB/C 鼠的免疫与细胞杂交融合

取 50 μg 纯化的南方鲇血清免疫球蛋白与等体积弗氏完全佐剂充分乳化, 背部皮下多点及腹腔注射 8 周龄 Balb/C 小鼠, 14d 后用等量抗原与弗氏不完全佐剂混合进行第二次免疫, 14d 后进行第三次免疫, 14d 后用 50 μg 纯化免疫球蛋白尾静脉加强免疫, 3d 后取免疫鼠脾细胞进行杂交融合。脾细胞和瘤细胞按 10 : 1 的比例在 50 mL 尖底离心管中混合, 1000 r/min, 5min, 弃上清, 用食指轻弹离心管底部, 使沉淀的细胞团块松散成糊状; 将离心管置于 37℃水浴

中, 一手均匀转动离心管, 另一手用 1 mL 吸管轻轻滴加 0.5—1 mL 融合剂(50% PEG、15% DMSO), 控制在 1min 内加完; 立即将细胞悬液吸入吸管内, 静置 30s, 再将细胞悬液吸回离心管; 在 2min 内缓缓加入 1 mL 无血清 1640 培养基, 1min 内加 2 mL, 最后慢慢加入无血清培养基至总体积为 30 mL, 以上过程均在 37℃水浴中进行; 以 800 r/m 离心 8min, 弃上清, 将细胞轻轻弹起, 重悬于 10 mL 含 HAT 和 20%胎牛血清的 1640 培养液, 加入 96 孔培养板, 100 μL/孔, 置 37℃、5% CO₂ 培养箱培养。

1.5 阳性杂交瘤的筛选及腹水制备

待融合细胞生长到培养孔面积的 1/10 时, 取上清用间接 ELISA 法进行筛选。用纯化的南方鲇血清免疫球蛋白作为包被抗原, 5 μg/mL, 100 μL/孔, 4℃过夜包被; 2%山羊血清于 37℃封闭 1h, 用 PBST [0.05%Tween20、0.01 mol/L PBS(pH 7.4)]洗涤 3 次, 每次 5min。加入杂交瘤上清 37℃温育 1h, 以 Sp2/0 上清作为阴性对照, 阳性对照为免疫血清。同上洗涤 3 次, 每孔加入 100 μL 辣根过氧化物酶标记的羊抗鼠 IgG(1 : 20000)37℃温育 1h。洗涤 3 次, 每孔加入 100 μL TMB 显色液, 于暗处反应 30min, 然后每孔加入 50 μL 2 mol/L 硫酸溶液终止反应, 450nm 下检测每孔 OD 值。经复测仍为强阳性的克隆用有限稀释法进行亚克隆。克隆化至阳性率达 100%, 扩增培养后置液氮保存。杂交瘤细胞株经冻存、复苏后取 5×10⁶ 对数生长期细胞腹腔接种 BALB/C 小鼠, 10—14d 后采集腹水, 离心收集上清, -20℃备用。

1.6 单抗特性鉴定

Western-blot 分析 免疫球蛋白经 SDS-PAGE 后, MiniTran-Blot Transfer Cell (Bio-Rad) 转移至 0.45 μm 的硝酸纤维素膜上(恒压 15 V, 转移 45min), 5%山羊血清封闭过夜后切割成 2 cm 宽的小条。每一小条分别与一种杂交瘤细胞培养上清 37℃孵育 1h, 洗涤后与辣根过氧化物酶标记的羊抗鼠 IgG (1 : 20000)反应。SuperSignal® West Pico 化学发光底物检测信号, X 胶片曝光显影。

亚级份的测定 按 Roche 公司 Mouse Monoclonal Antibody Isotyping Kit 操作手册进行。杂交瘤将培养上清做 1 : 100 稀释, 取 150 μL 加入反应管, 室温 30s 后振荡使乳胶颗粒重悬, 将测试条带黑色端向下插入反应管, 待阳性对照条带显现即可读取结果。

腹水 ELISA 效价的测定 以 5 μg/mL 纯化南方

鲇免疫球蛋白包被酶标板, 4℃过夜, 封闭后加腹水抗体, 腹水稀释度为 1:10³—10⁸, 每孔 100 μL, 其余步骤同 1.5。

单抗灵敏度的测定 纯化南方鲇免疫球蛋白起始浓度为 5 μg/mL, 倍比稀释至 10 ng/mL, 每孔 100 μL, 4℃包被过夜, 封闭后滴加各种腹水抗体, 腹水工作浓度 1:1000, 每孔 100 μL, 其余步骤同 1.5。

1.7 单抗特异性测定

收集罗非鱼、草鱼、鲫鱼、斑点叉尾鮰、光泽黄颡鱼和鲇血清, 以及水产动物常见病原菌: 气单胞菌 6 株、弧菌 2 株、爱德华氏菌 1 株、柱状屈桡杆菌 1 株、沙门氏菌 2 株和大肠杆菌 2 株共 14 株。待检鱼血清 1000 倍稀释后包被于酶标板, 各种病原菌以 PBS 重悬至 $A_{600}=0.5$, 超声波破碎后包被酶标板, 100 μL/well, 4℃包被过夜, 封闭、洗涤后滴加杂交瘤细胞培养上清, 其余步骤同上。

2 结果

2.1 南方鲇血清免疫球蛋白的分离纯化

南方鲇血清经 9%PEG 沉淀粗提, 再经过 Sepharose-4B 凝胶过滤层析后出现两个蛋白吸收峰。取部分峰值管液体浓缩后 SDS-PAGE 检测确定免疫球蛋白在第 2 蛋白峰内。取第 2 蛋白峰各管液体电泳进一步确定 55—60 管范围内的收集物较纯, 主要含有分子量约为 77 kD 和 27 kD 左右的两个蛋白条带(图 1)。

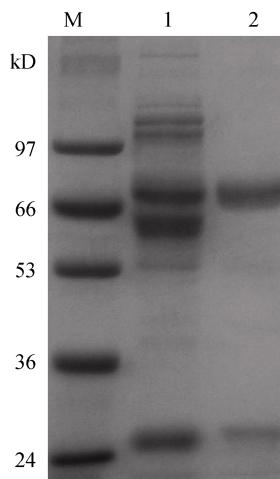


图 1 Sepharose-4B 纯化南方鲇血清 Ig 的 SDS-PAGE 图谱
Fig. 1 SDS-PAGE analysis of Southern catfish serum Ig purified by Sepharose-4B chromatography
M. 蛋白质分子量标准; 1. 南方鲇血清; 2. Sepharose-4B 柱层析提取物

M. molecular weight standard; 1. southern catfish serum; 2. serum Ig of southern catfish extracted by Sepharose-4B chromatography

2.2 细胞的融合与筛选

免疫鼠脾细胞与骨髓瘤细胞按 5:1 混合, 以 PEG/DMSO 为融合剂, 其融合阳性率达到 90%。经过筛选最终获得能稳定分泌抗体的杂交瘤细胞 4 株, 分别命名为 F4-A12、D2-C6、A9-B8、H6-H12。

2.3 单抗效价与特性分析

单克隆抗体细胞株经两次克隆后取培养上清进行 Western - blot 和单抗亚级份测定, 并制备了腹水抗体, 测定了腹水抗体的 ELISA 效价及其对南方鲇血清 Ig 的检测灵敏度。从表 1 可以看出 IgG1 有 2 株(F4-A12、D2-C6), IgG2a 有 1 株(A9-B8), IgG2b 有 1 株(H6-H12)。腹水抗体效价在 10⁴—10⁶ 之间。2 株单抗(F4-A12、D2-C6)能检测出 31 ng/mL 的南方鲇免疫球蛋白, A9-B8 能检测出 62 ng/mL 的南方鲇免疫球蛋白, H6-H12 的检测灵敏度是 125 ng/mL。从图 2 可以看出 4 株单抗中有 3 株(F4-A12、D2-C6、A9-B8)能与转印后的南方鲇血清 Ig 发生反应, 都是识别的重链区; 1 株(H6-H12)无 Western - blot 反应。

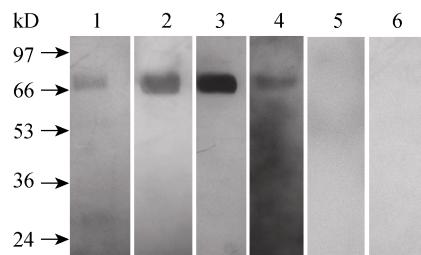


图 2 单抗的 Western-blot 图谱

Fig. 2 Western-blot of monoclonal antibodies
1. 鼠阳性血清; 2. F4-A12; 3. D2-C6; 4. A9-B8; 5. H6-H12; 6. 鼠阴性血清
1. positive mouse serum; 2. F4-A12; 3. D2-C6; 4. A9-B8; 5. H6-H12; 6. negative mouse serum

表 1 单抗特性分析
Tab. 1 The characterization of monoclonal antibodies

单抗 Monoclonal antibodies	Ig 亚类 Isotype	ELISA 效价 ELISA titer	灵敏度 Sensitivity (ng)
F4-A12	IgG1	10 ⁶	31
D2-C6	IgG1	10 ⁵	31
A9-B8	IgG2a	10 ⁴	62
H6-H12	IgG2b	10 ⁶	125

2.4 单抗特异性的测定

用南方鲇血清 Ig 单克隆抗体分别与不同种类的鱼血清及 14 株水产动物常见病原菌进行 ELISA 反应, 结果表明 4 株单抗仅识别南方鲇和鲇的血清 Ig, 与另外 5 种鱼的血清无交叉反应(表 2), 与被检的 14 株病原菌也无交叉反应。

表 2 单克隆抗体的特异性
Tab. 2 The specificity of monoclonal antibodies

	F4-A12	D2-C6	A9-B8	H6-H12
鮎 <i>Silurus asotus</i>	++	++	++	+
斑点叉尾鮰 <i>Ictalurus Punetaus</i>	-	-	-	-
光泽黄颡鱼 <i>Peheobagrus nitidus</i>	-	-	-	-
草鱼 <i>Ctenopharyngodon idellus</i>	-	-	-	-
鲫 <i>Carrassius auratus</i>	-	-	-	-
罗非鱼 <i>Oreochromis niloticus</i>	-	-	-	-

注: ++ 表示强阳性反应; + 表示阳性反应; — 表示阴性反应

Note: ++ indicates strong positive result; + indicates positive result; — indicates negative result

3 讨论

免疫球蛋白是鱼类体液免疫应答的重要组成部分, 鱼类体液免疫应答水平的监测、鱼类 Ig 结构分析及建立以免疫学为基础的病原快速诊断方法等基础与应用研究都有赖于提取和制备高纯度的 Ig。目前鱼类免疫球蛋白纯化方法主要有饱和硫酸铵沉淀和柱层析^[11]、免疫亲和层析^[12]、蛋白 A 亲和层析^[13]、MBP 亲和层析^[14]和优球蛋白法^[15]等。在这些方法中, 亲和层析是依靠生物高分子所特有的生物活性进行分离提纯的特异性吸附层析, 具有高效、快速、纯化效果好的优点, 是提取 IgM 的最佳方法。但在采用 Protein A 柱纯化前应事先考虑柱对鱼类 IgM 的结合能力, 这种结合能力因鱼而异^[16]。为了摸索适合南方鮎血清免疫球蛋白的有效纯化方法, 本研究曾选择了 Protein A 亲和层析、甘露糖结合蛋白 (Mannan Binding Protein, MBP) 亲和层析法以及凝胶柱层析法。预实验结果显示 Protein A 与南方鮎 Ig 亲和力很低, 无法得到纯化产物; 而用 MBP 亲和层析纯化除了重链和轻链外, 在重链上方还有分子量约为 97 kD 的主条带, 类似的结果在用 MBP 纯化澳洲肺鱼 (Barramundi) 血清免疫球蛋白时也有发现^[17]。Sepharose-4B 凝胶柱层析产物较纯, 有两条对应重链和轻链的主条带, 根据蛋白质分子量标准计算, 分子量分别约为 77 kD 和 27 kD。如果南方鮎血清 IgM 在自然状态也与其他硬骨鱼类一样为四聚体, 那么其总分子量的理论值约为 832 kD。鱼类 IgM 重链和轻链的分子量以及总分子量随着种类的不同而存在差异, 其总分子量约为 700—930 kD^[18—20]。本研究测出的南方鮎血清 Ig 的分子量符合有关文献所报道的硬骨鱼血清中 IgM 的分子量范围。由于 IgM

是鱼类血清中表达量最大的免疫球蛋白, 因此本研究所纯化的抗体主要是 IgM, 当然这还需要进一步的证实。

我们以 Sepharose-4B 凝胶柱层析产物为抗原, 采用常规注射方法免疫 Balb/ C 小鼠, 经融合、筛选获得 12 个阳性克隆, 反复检测和亚克隆后, 最终获得稳定分泌抗体的 4 株杂交瘤细胞。这 4 株单抗高度特异, 与鲤形目的草鱼和鲫鱼、鲈形目的罗非鱼、鮎形目鲿科的光泽黄颡鱼、鮎形目鮰科的斑点叉尾鮰血清 Ig 无交叉反应, 也不与水产动物常见病原菌发生反应。但南方鮎 Ig 单克隆抗体与同属鮎属的鮎 Ig 发生同等强度的反应, 这证实了两者之间有很近的亲缘关系, 同时也提示我们可以利用南方鮎 Ig 的单抗对鮎 Ig 进行相关研究。在 Western-blot 检测中免疫鼠阳性血清能识别免疫球蛋白的重链和轻链, 但呈阳性反应的 3 株单抗都是针对 Ig 的重链区, 没有获得抗轻链的单抗; 有 1 株单抗呈阴性反应, 虽然 ELISA 检测中表现强阳性, 因此它可能是构象依赖性抗体, 不能识别变性后的南方鮎 Ig。林天龙等^[21, 22]报道的欧洲鳗和鳜鱼血清 IgM 单抗也多数都是重链特异性的, 这与鱼类免疫球蛋白轻链分子量小、免疫原性相对较弱有关。

从单抗的敏感性试验中可看出, 单抗 F4-A12、D2-C6(1 1000 稀释)对纯化的南方鮎 Ig 的检测灵敏度为 31 ng, 这可为南方鮎血清学调查和病原诊断等方面研究提供重要工具。鱼类除了血清中有 Ig 外, 在皮肤黏液、肠黏液以及鳃黏液中也有特异性 Ig 的存在, 它们构成抵御病原微生物侵袭的第一道免疫保护屏障^[23, 24]。但是对黏液 Ig 的发生、来源与免疫调控及其在免疫应答过程中的消长规律和介导免疫保护的机理, 人们尚未取得一致观点。在本研究中还利用南方鮎 Ig 单克隆抗体对南方鮎皮肤黏液提取物进行了 ELISA 检测, 结果呈阳性; SDS-PAGE 结果揭示南方鮎皮肤黏液和血清 Ig 两者轻重链分子量一致。以上结果提示南方鮎黏膜 Ig 和血清 Ig 相似的免疫原性。利用南方鮎 Ig 单抗有可能比较分析黏液和血清 Ig 两者之间的异同点, 对黏膜 Ig 的产生细胞进行定位, 从而说明黏膜 Ig 的发生与来源。综上所述, 南方鮎 Ig 单克隆抗体可以广泛应用于南方鮎免疫球蛋白结构与功能的分析, 血清学流行病学调查, 以及免疫应答水平监测和疫苗免疫效果的评价。单抗的应用将有助于南方鮎免疫学深层次研究的开展。

参考文献:

[1] Wang G T, kIM J H, Sameshima M, et al. Detection of antibody against the monogenean *Meterobothrium okamotoi* in the tiger puffer by ELISA [J]. *Fish Pathology (Gyobyo Kenkyu)*, 1997, **32**(3): 179—180

[2] Hansen J D, Landis E D, Phillips R B. Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish [J]. *Proceedings of the National Academy of Sciences of the United States of America*, 2005, **102**(19): 6919—6924

[3] Zhang Y A, Salinas I, Li J, et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity [J]. *Nature Immunology*, 2010, **11**(9): 827—835

[4] Ding W D, Cao L P, Cao Z M. Purification of serum IgM from grass carp and preparation of rabbit sera anti-IgM [J]. *Acta Hydrobiologica Sinica*, 2010, **34**(1): 164—169 [丁伟东, 曹丽萍, 曹哲明. 草鱼血清 IgM 蛋白的纯化及抗血清的制备. 水生生物学报, 2010, **34**(1): 164—169]

[5] Liu C H. New species of *Parasilurus* [J]. *Journal of Sichuan University (Natural Science Edition)*, 1965, (1): 101—116 [刘成汉. 鮈鱼(*Parasilurus*)种的新资料. 四川大学学报(自然科学版), 1965, (1): 101—116]

[6] Shi B N. Biology study of southern catfish in Jialing River [J]. *Journal of Southwest China Normal University (Natural Science Edition)*, 1980, (2): 45—52 [施白南. 嘉陵江南方大口鮈的生物学研究. 西南师范学院学报(自然科学版), 1980, (2): 45—52]

[7] Zhang Y G, Xie X J. Reproductive biology of *Silurus meridionalis* Chen: the development and annual change in the gonads [J]. *Acta Hydrobiologica Sinica*, 1996, **20**(1): 8—16 [张耀光, 谢小军. 南方鮈的繁殖生物学研究: 性腺发育及周年变化. 水生生物学报, 1996, **20**(1): 8—16]

[8] Xie X J. Studies on energy income and expenses of *Silurus meridionalis* Chen [D]. Thesis for Doctor of Science. Beijing Normal University, Beijing. 1989 [谢小军. 南方鮈的能量收支的研究. 博士学位论文, 北京师范大学, 北京. 1989]

[9] Zhang W B, Xie X J, Fu S J, et al. The nutrition of *Silurus meridionalis* Chen: optimum dietary protein level [J]. *Acta Hydrobiologica Sinica*, 2000, **24**(6): 603—609 [张文兵, 谢小军, 付世建, 等. 南方鮈的营养学研究: 饲料的最适蛋白含量. 水生生物学报, 2000, **24**(6): 603—609]

[10] Lin C Y, Jin B Q, Fan Z Z. Common pathogen of cultured southern catfish in Tianjing region [J]. *Reservoir Fisheries*, 2004, **24**(4): 74—751 [林春友, 金宝全, 樊振忠. 天津地区养殖南方大口鮈常见病记述. 水利渔业, 2004, **24**(4): 74—751]

[11] Yang G W, An L G, Wen W J, et al. Comparative studies on the immunoglobulin in bile and serum of *Cyprinus carpio* [J]. *Journal of Fisheries of China*, 1998, **22**(3): 199—203 [杨桂文, 安利国, 温武军, 等. 鲤胆汁与血清中免疫球蛋白的比较研究. 水产学报, 1998, **22**(3): 199—203]

[12] Zhang Y A, Nie P. Isolation, purification and molecular weight determination of serum immunoglobulin from mandarin fish (*Siniperca chuatsi*) [J]. *Acta Hydrobiologica Sinica*, 1998, **22**(2): 192—194 [张永安, 聂品. 鳉血清免疫球蛋白的分离纯化及其亚单位分子量的测定. 水生生物学报, 1998, **22**(2): 192—194]

[13] Feng J, Hu C Q. Purification and characteristics of serum immunoglobulins of four major cultured marine fishes in China [J]. *Journal of Tropical Oceanography*, 2002, **21**(4): 8—13 [冯娟, 胡超群. 四种海水养殖鱼类血清免疫球蛋白的分离纯化及分子量测定. 热带海洋学报, 2002, **21**(4): 8—13]

[14] Huang Y Q, Wang G T, Sun J, et al. Purification and molecular weight determination of serum immunoglobulin from *Pseudobagrus fulvidraco* [J]. *Acta Hydrobiologica Sinica*, 2003, **27**(6): 654—656 [黄艳青, 王桂堂, 孙军, 等. 黄颡鱼血清免疫球蛋白的纯化及分子量的初步测定. 水生生物学报, 2003, **27**(6): 654—656]

[15] Wang X L, Gong H, Yang J X, et al. Purification of *Anguilla* *Anguilla* serum immunoglobulin by euglobulin precipitation [J]. *Fujian Journal of Agricultural Sciences*, 2009, **24**(3): 197—200 [王希龙, 龚晖, 杨金先, 等. 优球蛋白法纯化欧鳗免疫球蛋白. 福建农业学报, 2009, **24**(3): 197—200]

[16] Bromage E S, Ye J M, Owens L. Use of staphylococcal protein A in the analysis of teleost immunoglobulin structural diversity [J]. *Developmental and Comparative Immunology*, 2004, **28**(7—8): 803—814

[17] Crosbie P B, Nowak B F. Production of polyclonal antisera against barramundi (*Lates calcarifer*) serum immunoglobulin derived from affinity columns containing mannan-binding protein or staphylococcal protein A [J]. *Aquaculture*, 2002, **211**(1—4): 49—63

[18] Yan Q B, Han Y F, Gao T X, et al. Purification of serum IgM from large yellow croaker (*Pseudosciaena crocea*) and preparation of rabbit sera anti-IgM [J]. *Journal of Fishery Sciences of China*, 2006, **13**(3): 475—479 [鄢庆彬, 韩一凡, 高天祥, 等. 大黄鱼血清 IgM 纯化及其免疫血清制备. 中国水产科学, 2006, **13**(3): 475—479]

[19] Liu Y, Sun F. Purification and partial characterization of serum immunoglobulins from Japanese flounder (*Paralichthys olivaceus*) [J]. *Journal of Fishery Sciences of China*, 2007, **14**(4): 547—553 [刘云, 孙峰. 牙鲆血清免疫球蛋白的分离纯化及部分特性分析. 中国水产科学, 2007, **14**(4): 547—553]

[20] Yi G H, Lin T L. Purification and preliminary structural analysis of serum immunoglobulin in channel catfish (*Ictalurus punctatus*) [J]. *Fujian Journal of Agricultural Sciences*, 2005, **20**(2): 91—96 [伊光辉, 林天龙. 斑点叉尾回血清免疫球蛋白纯化及其结构分析. 福建农业学报, 2005, **20**(2): 91—96]

[21] Lin T L, Chen Q, Gong H, et al. Production and characterization of monoclonal antibodies against *Anguilla anguilla*

IgM [J]. *Journal of Fisheries of China*, 2001, **25**(6): 532—537 [林天龙, 陈强, 龚晖, 等. 欧洲鳗免疫球蛋白单克隆抗体的制备与特性. *水产学报*, 2001, **25**(6): 532—537]

[22] Wang F, Lin T L, Pan H J, et al. Production and characterization of monoclonal antibodies against *Siniperca chuatsi* Ig [J]. *Journal of Fisheries of China*, 2006, **30**(2): 285—288 [王凡, 林天龙, 潘厚军, 等. 鳜免疫球蛋白单克隆抗体的制备及特性. *水产学报*, 2006, **30**(2): 285—288]

[23] Feltcher T, Grant P. Immunoglobulins in the serum and mucus of plaice, *Pleuronectes platessa* [J]. *Journal of Biochemistry*, 1969, **115**(5): 1—65

[24] Lobb C J. Secretory immunity induced in catfish, *Ictalurus punctatus*, following bath immunization [J]. *Developmental and Comparative Immunology*, 1987, **11**(4): 727—738

PRODUCTION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST *SILURUS MERIDIONALIS* CHEN SERUM IMMUNOGLOBULIN

ZHANG Xiao-Ping, WEI Jing and QIU Yan

(Key Laboratory of Eco-environment in the Three Gorges Reservoir Region (Ministry of Education), School of Life Science, Southwest University, Chongqing 400715, China)

Abstract: Monoclonal antibodies (MAb) to serum immunoglobulins (Ig) of fish are of immense use in understanding on the fish immune system and rapid identification of pathogens. Southern catfish (*Silurus meridionalis* Chen) is a unique and important culture fish in China. Literature review indicated that MAbs have not been developed against the Ig of Southern catfish. This paper described the purification and characterization of serum Ig on southern catfish, along with the development and characterization of MAbs against Ig on southern catfish. Serum Ig from healthy southern catfish was purified by 9% polyethylene glycol (PEG6000) precipitation and followed by Sepharose-4B gel column chromatography. SDS-PAGE analysis showed that molecular weight of heavy chain and light chain was approximately 77 kD and 27 kD respectively. The purified serum Ig of southern catfish was used as antigen to immunize Balb/c mice. After four times immunization, the spleen of immunized mouse was removed, and the spleenocytes were obtained and fused with myeloma cells by using PEG 4000. The hybrids were plated into 96 well tissue culture plates and observed for colony growth. After two weeks, wells with hybridomas were tested by ELISA for screening the antibody secreting cell. Four hybridoma cell lines which secrete MAbs against the Ig of southern catfish had been established. Culture supernatant of the four positive hybridomas were collected and tested using the IsoStripTM Mouse Monoclonal Antibody Isotyping Kit, the results showed that two of them were IgG1, one was IgG2a and one belonged to IgG2b. Ascites of four MAbs were obtained and titers ranged from 10^4 to 10^7 tested by ELISA. Standard procedures of Western blotting were used to determine the reactivity of the MAbs in hybridoma culture supernatants to reduced southern catfish serum Ig on a 10% gradient gel. Three of four MAbs were able to recognize the heavy chain of the Ig on Western blotting; the last one did not react with reduced southern catfish Ig under low dilution condition, although it showed strong reactivity in ELISA under high dilution condition. Specificity of four MAbs was investigated by ELISA and Western blotting using different fish serum as antigen. Results from ELISA showed that all of them only specifically reacted with serum of *Silurus meridionalis* Chen and *Silurus asotus*, and did not have any cross reaction with serum of *Ictalurus punctatus*, *Peheobagrus nitidus*, *Ctenopharyngodon idellus*, *Carrassius auratus* and *Oreochromis niloticus*. Western blotting further proved that three of four MAbs were able to bind the heavy chain of Ig only from *Silurus meridionalis* Chen and *Silurus asotus*, and all MAbs had no reaction with serum Ig of the other fish. The reactivity of MAbs with the fish common bacterial pathogen was tested by ELISA using bacteria, such as *Aeromonas*, *Edwardsiella*, *Vibrio*, *Flexibacter columnaris*, *Salmonella* and *Escherichia coli*, as coating antigen, and all four MAbs had no reaction with those tested bacterial pathogen. The measuring sensitivity of the Mab MaF4-A12 to purified southern catfish Ig was as low as 31 ng. All of these results demonstrated that MAbs were highly specific and sensitive to the Ig of southern catfish, and had the great potential to be used for analyzing the structure of southern catfish Ig, monitoring the immunity level and pathogen diagnosis.

Key words: *Silurus meridionalis* Chen; Immunoglobulin; Monoclonal antibody