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1 (a) ) Fig. 3  Effects of light intensities on chlorophyll contents of

Fig. | The growth curves of Phacodactylum tricornutum (a) and Phaeodactylum tricornutum (a) and Thalassiosira weissflogii (b)

Thalassiosira weissflogii (b) under different light intensities
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Fig. 4 Effects of light intensities on chlorophyll a fluorescence parameter of Phaeodactylum tricornutum and Thalassiosira weissflogii
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Fig. 5 Effects of light intensities on the CA activity of Phaeo-
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Tab. 1 The parameters of P-1 curves of Phaeodactylum tricornutum and Thalassiosira weissflogii under different light intensities
Algae Light intensities P, a Ry Iy
50 295.1£2.6 7.8+0.1 —38.7+0.8 38.0+0.3
P, tricornutum 200 494.54+2.7* 9.2+0.1 —97.9+1.8%* 53.7+0.3%
50 202.2+3.4 1.4+0.1 -8.5+£0.6 149.2+2.5
T. weissflogii 200 229.0£5.2 1.4+0.1 —18.2+3.3%* 157.94£3.6
: (P,): pmol O,/(mg Chl. a-h); (a):pmol O,/(mg Chl. a-h)/umol/(m? -s); (Rq): pmol O,/(mg
Chl. a-h); (L): pmol/(m?-s); * (P<0.05)

Note: *represents significant difference (P<0.05) between the low light and high light
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EFFECTS OF LIGHT INTENSITIES ON PHOTOSYNTHESIS, CARBONIC
ANHYDRASE AND RUBISCO ACTIVITY IN TWO DIATOMS

ZENG Xiao-Peng and XIA Jian-Rong
(School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China)

Abstract: Marine planktonic diatoms play an important role in marine primary productivity and the carbon fixation is
closely related to light intensity. In the present study, we investigated the growth rate, photosynthetic characteristics,
carbonic anhydrase activity, and ribulose 1, 5-bisphosphate carboxylase/oxidase (RubisCO) activity of Phaeodactylum
tricornutum and Thalassiosira weissflogii under different light intensities (high or low light). The results showed that
high light intensity promote the growth of the two diatoms, which was more obvious in 7. weissflogii. High light
intensity attenuated the levels of chlorophyll a, ¢ content, F,/F,, and Yield but increased qN. High light intensity has no
effect on qP. High light also enhanced the intracellular and extracellular carbonic anhydrase activities in both diatoms.
Interestingly, in P. tricornutum, low light increased ribulose-1,5-bisphosphate carboxylase/oxygenase activity compared
to high light; however, the opposite result was observed in 7. weissflogii. Rubisco activity in 7. weissflogii is higher than
that in P. tricornutum in.both low and high light. These results suggest that the two diatoms are differently responded to
the light intensity and that they can accordingly adjust their photosynthetic characteristics, carbonic anhydrase and

RubisCO activity to accommodate the varied light intensity.

Key words: Light intensity; Phaeodactylum tricornutum; Thalassiosira weissflogii; Photosynthesis; Carbonic anhydrase;
RubisCO



