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工业生产排放的各种废气与污水污染人类赖以生存

的环境。化石燃料燃烧除排放出大量CO2外, 还释放出含

有粉尘、SOx和NOx等直接危害人类健康的有毒成分
[1]。

其中NOx与水结合后最终会转化成硝酸盐或亚硝酸盐等
[2], 

导致污水中的含氮化合物氨氮、亚硝酸盐氮、硝酸盐氮和

有机氮的含量通常偏高。如何有效去除污水中的氮是防治

水体污染最关键的步骤之一, 而利用微藻培养去除水体

中的氮源是目前研究的热点。尽管生物燃料生产的成本远

高于化石燃料, 且微藻培养过程中消耗仅与产出的能量

相当, 但生物燃料包括微藻生物质在替代减排上的潜力

巨大, 使得微藻生物质仍被认为是最有前途的生物燃料

之一[3]。将微藻生物质生产与污水处理和废气利用相结合, 

可在减少碳排放的同时增加经济效益, 由此使得利用微

藻作为生产生物质的原料变得经济可行。 

微拟球藻 (Nannochloropsis)是一类属于真眼点藻纲

(Eustigmatophyceae)、球形或近似球形的单细胞真核生物, 

具有较高的光合作用效率、生物量和油脂含量[4]。目前, 

对有些微拟球藻株已建立了成熟的大规模封闭式光生物

反应器和开放池的户外培养体系, 多个藻株的全基因组

序列业已公布, 遗传转化体系也已建立[5—8]。因而, 该属

的种类被认为是最有潜力的工业产油的模式研究藻种[4]。

该属有6个已定种[9], 其中仅有一个种类为淡水类型[10]。

尽管利用海洋种类作为微藻生物质原料的生产有许多优

势, 然而, 从污水处理角度考虑利用淡水种类更为合适。

迄今, 尚未见对淡水湖泊微拟球藻(N. limnetica)产油特性

的报道, 也没有关于其对碳耐受及不同氮源利用效率的

研究。本文以湖泊微拟球藻为对象, 分析在不同浓度CO2

下 , 其对不同类型氮源的利用及油脂与脂肪酸含量 , 为

利用淡水微拟球藻生产生物能源的同时进行污水及废气

中氮去除的应用潜力提供理论依据。 

1  材料与方法 

1.1  藻株和培养 

湖泊微拟球藻(N. limnetica KR 1998/3)由德国淡水生

态和内陆渔业研究所(Institute of Freshwater Ecology and 

Inland Fisheries, Neuglobsow)Lothar Krienitz教授提供, 经

稀释涂平板纯化后得到无菌藻落。常规培养使用BG11培

养基, 在温度为22℃、光强为60 μmol photons/(m2·s)的连

续光照下进行。 

三种氮源实验分别用1 mmol/L的NH4Cl、NaNO2或

NaNO3替代BG11培养基中的NaNO3。培养使用内径为

3 cm, 长为60 cm的柱状玻璃管。接种起始A730 =0.15, 培
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养体积为300 mL。培养在通入空气、2%或5%的CO2 (v/v), 

光强约为120 μmol photons/(m2·s)的连续光照条件进行。

每天定时取样测定生长、培养液pH及氮和磷的消耗。 

1.2  常规参数测定 

通过测定培养液的A730值监测藻细胞的生长。藻细胞

培养液经离心后用pH计测定pH。培养液中NO2
−和NO3

−的

浓度利用分光光度法(A220)检测[11]。NH4
+的测定采用纳氏

剂-分光光度法(A420)[12]。磷酸盐浓度用磷钼酸分光光度法

测定[13]。 

1.3  藻株中性脂含量分析 

分别在培养的第2、第4、第6和第8天收集相同数目的

藻细胞 , 提取总脂 , 利用薄层层析法比较总脂的组成及

含量。藻细胞的总脂按照Bligh和Dyer[14]的方法提取。经

6000 r/min离心收集的藻细胞加入一定体积的氯仿︰甲醇 

(1︰1), 在旋涡振荡器上以最大速度振荡1—2min, 然后

加入3/10体积的1 mol/L氯化钾的0.2 mol/L磷酸溶液, 稍

振荡后12000 r/min离心5min, 吸取下层氯仿相至新的EP

管中, 置于通风橱中吹干, –20℃保存备用。薄层层析参照

文献[15]进行。薄层层析板的型号是Silica gel 60 F254 

(Merk KgaA Darmstadt, Germany), 展层剂体系为正己

烷︰乙醚︰乙酸(70︰30︰1, v/v/v)。展层完毕从展层缸中

取出层析板 , 置于通风橱内吹干展层剂 , 然后放置到含

有一定量颗粒碘的烧杯中于37℃下显色5—10min[16]。标

准品三油酸甘油酯(Glyceryl trioleate)购自Sigma公司。 

1.4  总脂含量的测定及脂肪酸组成分析 

6000 r/min离心收集培养 8d的藻细胞, 用灭菌 ddH2O

洗涤三次, 将收集的藻细胞液氮速冻后, 冷冻干燥备用。

总脂的提取及定量参照文献[14]。称取 100 mg 干藻粉加

入一定体积的氯仿: 甲醇 (1︰2) 溶剂萃取充分, 然后加

入一定比例的灭菌 ddH2O 促使分层, 离心收集下层的氯

仿层, 转入已称重的称量瓶中, N2吹干有机溶剂, 然后用 

分析天平称重, 计算总脂的含量。 

总脂甲酯化按如下步骤进行: 将一定量的总脂转移到

1.5 mL Aglient 玻璃瓶中, 加入1 mL 1 mol/L的硫酸甲醇溶

液, 充N2后密封, 于100℃反应1h。冷却后, 加入200 μL 蒸

馏水, 混匀后, 以200 μL 正己烷萃取三次, 合并有机相, 

N2 吹干后用正己烷定容至100 μL, 取1 μL 用Ultra Trace 

气相色谱分析仪 (Thermo Scientific, United States) 进行脂

肪酸组成分析。色谱柱为毛细管柱(60 m × 0.25 mm); 进样

口温度为250 , FID℃ 检测器的温度为280 ; ℃ 实验采用程序

升温 : 150 , 1min; 150℃ —220 , 5 /min; 220℃ ℃ —280 , ℃

20 /min; 280 , 3℃ ℃ 3min; 载气为高纯氮, 流速2 mL/min。用

面积归一法计算各脂肪酸组分的相对百分比。 

2  结果与讨论 

2.1  生长 

预实验显示 , 在CO2浓度为5%的条件下 , 湖泊微拟

球藻的生长即受到明显的抑制。研究显示, 其他所有5种

海洋微拟球藻在通入5%的CO2时生长并没有受到促进 , 

相反一半以上种类的生长被严重抑制[17]。可见, 微拟球藻

属的种类属于CO2敏感型(不耐受)的类型[18]。在本实验中, 

湖泊微拟球藻在通入2%CO2时(0—0.28/d)的比生长速率

均低于通空气培养条件(0.27—0.29/d)。尤其是在NH4Cl

为氮源条件下, 通入2%CO2培养湖泊微拟球藻几乎不能

生长 , 培养液的pH维持在6左右(图1)。研究表明 , 在高

CO2条件下观察到光合作用的快速抑制, 是由高CO2压力

下叶绿体间质的酸化引起卡尔文循环的关键酶失活所导

致的 [19]。通空气培养时培养液的pH为7—8.5, 在通入

2%CO2时, 培养液的pH降至6—7.5。以NH4Cl为氮源将使

得培养液的pH进一步下降 , 图1的结果也显示在使用

NH4Cl作为氮源的条件下培养液的pH至少低于以NaNO2

和NaNO3为氮源条件时1个单位。 

 

图 1  在不同氮源下湖泊微拟球藻在通空气(A)与 2%CO2(B)条件下的生长(A730, 用实心图标表示)及培养液中 pH的变化(用空心图标表示) 

Fig. 1  Growth (A730) and pH value in medium of Nannochloropsis limnetica cultured at different nitrogen sources aerated with air (A) and 
2% CO2 (B) 
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以NaNO2为氮源条件下湖泊微拟球藻的生长最佳 , 

通空气培养时铵态和硝态氮条件下藻细胞的生长相当。通

常认为, 浮游植物具有选择性利用氮源的特点。硅藻类偏

好硝态氮, 而鞭毛藻类则更倾向于还原态氮[20]。NO3
−需在

硝酸还原酶作用下形成NO2
−, 后者再由亚硝酸还原酶还

原成NH4
+后才可被藻细胞固定。因而, NH4

+似乎应是藻类

培养的最佳氮源, 许多研究也表明与硝态氮和亚硝态氮

比铵态氮更能促进藻类的生长[21, 22]。尽管许多藻类均能

利用亚硝态氮, 但过高浓度的亚硝酸盐对藻有毒害作用[23]。

在本实验中, 在高达1 mmol/L NaNO2条件下湖泊微拟球

藻生长仍优于同样浓度的硝酸钠培养, 显示湖泊微拟球

藻具有好的亚硝酸盐耐受性。这一特性暗示可以直接通过

培养该藻来处理富含高浓度NOx的烟道气
[24]。 

2.2  营养盐吸收 

图2显示湖泊微拟球藻对不同氮源的利用情况, 结果

显示对铵态氮的吸收最快 , 其次为亚硝态氮 , 对硝态氮

的吸收最慢。这一结果进一步说明在合适的浓度下, 还原

态的铵可以最快地被细胞固定, 而硝态氮由于要经过两

步还原后才能被固定, 所以被吸收得最慢。培养液中的氮

浓度随培养时间在前4天快速下降, 随后趋于稳定。通常藻

细胞可以快速吸收氮源并储存在细胞中用于细胞分裂[22]。

与生长相关, 湖泊微拟球藻对磷的利用在生长前期没有

差别 , 后期培养液剩余的磷与生长呈负相关 , 生物量越

高培养液中磷的浓度越低(图2)。 

 

图 2  不同氮源下湖泊微拟球藻在通空气(A)与 2%CO2(B)条件下对氮(用实心图标表示)和磷(用空心图标表示)的消耗 

Fig. 2  Nitrogen and phosphate concentrations in medium of Nannochloropsis limnetica cultured at different nitrogen sources aerated with 
air (A) and 2% CO2 (B) 
 

2.3  产油特性 

与其他藻类不同, 即使在不缺氮条件下微拟球藻也

能合成甘油三酯, 它们含有 13 个二脂酰甘油酰基转移酶

(DGAT)基因, 其数目是目前已知藻类和植物基因组中最

多的, 这也正是微拟球藻属的种类能大量积累油脂的原

因之一[25, 26]。利用薄层层析分析从第 2 到第 8 天湖泊微

拟球藻总脂组成发现, 第 4天即可检测到大量甘油三酯的

积累, 随后随培养时间变化甘油三酯含量略有升高(图 3)。

而第 4天, 藻细胞生长仍然处在对数期, 培养液氮浓度则

超过 200 μmol/L。即使在培养的第 2天, 以硝态氮为氮源

条件下也可检测到少量的甘油三酯。研究显示, 淡水微拟

球藻的甘油三酯含量与海洋的微拟球藻相当[27]。显然, 中

性脂含量的高低与培养条件有密切的关系。由于使用的培

养基氮浓度高达 17.6 mmol/L, 培养早期收获检测到的湖

泊微拟球藻仅含很低的甘油三酯[28]。不同氮源对湖泊微

拟球藻甘油三酯含量有一定影响, 以亚硝酸盐为氮源条

件下甘油三酯含量高于其他两种氮源。在 2%的 CO2浓度

培养条件下 , 以亚硝酸盐为氮源与通空气培养相当 , 但 

 
图 3  不同氮源下湖泊微拟球藻在通空气(A)与 2%CO2(B)条件

下总脂的硅胶板薄层层析图 

Fig. 3  Comparison of lipid composition and content in Nan-
nochloropsis limnetica cultured at different nitrogen sources aer-
ated with air (A) and 2% CO2 (B)  

M. 三油酸甘油酯 Triolein 
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表 1  不同氮源下湖泊微拟球藻在通空气(A)与 2%CO2(B)条件下总脂含量(占藻细胞干重)及其脂肪酸组成(摩尔百分比) 
Tab. 1  Total lipid (% dry cell weight) content and fatty acid composition (mol %) in total lipids of Nannochloropsis limnetica KR 1998/3 
cultured at different nitrogen sources aerated with air or 2% CO2 

NO2
−  NO3

−   NH4
+ 

总脂及脂肪酸 

Total lipids and fatty acids Air 2% CO2 Air 2% CO2 Air 

C14:0 6.44±1.72 9.12±0.35 2.78±3.33 8.79±0.33 8.50±4.48 

C14:1 0.59±0.40 0.35±0.38 0.49±0.59 0.26±0.22 0.40±0.38 

C16:0 29.56±2.32 26.56±1.41 26.62±2.64 31.01±0.90 28.72±2.86 

C16:1 32.90±1.40 31.78±3.05 32.80±2.45 31.30±0.59 34.86±3.78 

C18:0 1.28±0.41 1.72±1.21 1.87±0.79 1.50±0.03 1.10±0.76 

C18:1 14.44±0.48 12.88±1.22 16.18±1.73 12.21±1.58 13.48±2.89 

C18:2 2.46±0.49 2.84±0.95 2.99±1.39 2.55±0.34 2.67±0.37 

γ-C18:3 0.11±0.12 0.25±0.28 0.97±1.32 0.07±0.02 1.06±0.89 

α-C18:3 0.71±0.17 1.28±0.95 1.25±1.27 0.69±0.02 0.69±0.66 

C18:4 0.44±0.52 0.33±0.46 0.96±1.06 0.20±0.28 0.36±0.51 

C20:0 1.05±1.03 0.71±0.66 0.86±0.87 0.65±0.07 0.57±0.64 

C20:4 2.73±0.88 3.46±0.14 3.51±1.16 2.95±0.03 2.21±1.64 

C20:5 6.79±2.29 7.70±0.12 7.25±0.09 7.52±0.98 4.84±3.41 

C22:0 0.09±0.13 0.32±0.46 0.28±0.38 0.00±0.00 0.23±0.33 

C22:4 0.10±0.14 0.26±0.37 0.37±0.23 0.00±0.00 0.05±0.08 

C22:5 0.24±0.34 0.37±0.20 0.55±0.63 0.28±0.08 0.19±0.27 

C22:6 0.08±0.10 0.07±0.07 0.28±0.38 0.03±0.01 0.05±0.06 

占干重百分比 

(% dry cell weight) 
40.3 39.1 44.8 34.1 41.9 

 
在另外两种氮源培养下则显著降低。因此从微藻产油角度

而言, 亚硝态氮也是湖泊微拟球藻最为合适的氮源。 

将培养8d的湖泊微拟球藻收获用于分析藻细胞的总

脂含量及其脂肪酸组成。表1显示湖泊微拟球藻的总脂含

量为34%—45%, 与海洋微拟球藻的总脂含量相当[27]。在

高CO2浓度下藻细胞的总脂含量减少。湖泊微拟球藻脂肪

酸组成以C16:0、C16:1和C18:1为主, 三者之和占总脂肪

酸的71%—77%。另外两种含量较高的脂肪酸为C14:0和

C20:5。微拟球藻属的种类均含有高的二十碳五烯酸(EPA), 

因而被认为是工业化生产EPA的最佳原料[29]。尽管EPA在

该藻中仅为5%—8%, 这与细胞所处的培养期相关, 培养

期延长导致的缺氮显著减少EPA含量[30]。不同氮源培养对

几种短链脂肪酸的含量影响不大, 而其多不饱和脂肪酸

含量均未超过12%, 丰富而稳定的短链脂肪酸组成特点

符合作为生物柴油原料的标准。 

为将微藻生物质生产与污水处理和废气氮去除相结

合 , 本研究以富含甘油三酯的湖泊微拟球藻为原料 , 研

究发现该藻最合适的氮源为亚硝态氮。该藻可直接高效利

用废水、废气中的氮, 同时积累大量油脂, 是一个在工业

上有应用前景的优良藻株。 
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