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1. Frequency controller; 2. Pump; 3. Propeller; 4. Flow-diversion

barriers; 5. Flow streamer; 6. Net; 7. Camera; 8. Tank
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Fig. 2 The relation between frequency and water speed
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Fig. 3 Durations of sliver carp at different water speeds
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Fig. 4 Percentages of Turned-around of silver carp at different
water speeds
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Fig. 6 Burst distances of silver carp at different water speeds
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STRATEGIES OF BURST-COAST SWIMMING BEHAVIOR OF JUVENILE
SILVER CARP AT DIFFERENT FLOW VELOCITIES

LIANG Yuan-Yuan"?, LIN Chen-Yu’, CHEN Ting’, ZHANG Qiu-Sheng’, LIU Guo-Yong"’, LIU De-Fu’, GAO Zhu’
and SHI Xiao-Tao~

(1. College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang 443002, China; 2. Engineering
Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges
University, Yichang 443002, China)

Abstract: At the water temperature of (18+1)°C, the current study investigated the strategies of burst-coast swimming
behavior of juvenile Silver carps Hypophthalmichthys molitrix (at full length of 11.70+£0.57 cm) such as swimming du-
ration, percentage of turned-around, burst time, distance and speed in the burst-coast performance at different flow ve-
locities (16.5, 22.0, 27.5, 33.0, 38.5, 44.0, 49.5 and 55.0 cm/s). Results showed that the average swimming duration of
silver carps first decreased and then increased with the increasing flow velocity. The shortest duration time is 118.6min
when fish swim at 33.0 cm/s. The maximum duration of swimming in each group was more than 200min. The percen-
tage of turned-around quickly decreased with the increasing flow velocity, while no turned-around behavior occurred at
the flow velocity =44.0 cm/s. The average burst time of burst-coast swimming of silver carp were positively associa-
ted with flow velocity (y=0.03x+2.64, R'=0.92, P<0.05). Average burst distances relative to the ground for each group
were at the range of 30—45 cm without significant difference (P>0.05). However, the average absolute burst distances
increased significantly with the increase of flow velocity (y=4.98x—5.63, R*=0.98, P<0.001). The average mean burst
velocities relative to the ground and average maximum burst velocities relative to the ground had no significant diffe-
rence (P>0.05), which were at the range of 9—12 cm/s and 12—16 cm/s, respectively. There was a positive linear rela-
tionship between average absolute burst velocity and flow velocity (absolute average mean burst speed: y=0.98x+10.74,
R’=1.00, P<0.001. The absolute average maximum burst speed formulated by y=1.02x+13.75, R*=0.99, P<0.001).
These data proved that silver carp took different burst-coast behavior strategies at different flow velocities.

Key words: Silver carp; Velocity barrier; Swimming duration; Behavior strategy; Burst-coast



