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Tab. 1 Primers used in this study

5| ¥y Primers J¥%Sequences (5—3") FH#Usage
cpx-50 CGCICTAGACAGGTCGGAGCGGTAGT
Amplification of up-stream of gene cpxR:F1
cpx-51 CGAAAGAAGGGCAGGAACTCGGTGAGCAACTGGGT
cpx-30 CCCGGTACCTTGGTGGTACAGGCGAAT
Amplification of down-stream of gene cpx4:F2
cpx-31 ACCCAGTTGCTCACCGAGTTCCTGCCCTTCTTTCG
cpx-incheck-F TTGAGCAGGGAGGAGATG
) Identification of cpxRA mutant
cpx-incheck-R TGTCATCCCACTCAAACCC
cpx-outcheck-F AGACCTCCTCCTGACCT
Identification of cpxRA mutant
cpx-outcheck-R TGCACCGATTCATAGC
PRE-check-F TTCGTCTCAGCCAATC
Sequencing the recombinant plasmid pRE-Acpx
pRE-check-R TGGTGCGTACCGGGTTG
com-F CCCAAGCTTGGTAATCAGCAGGGTGGC ) )
Construction of cpxRA complementary strain
com-R GTGAGCATGCGAGTCTGCTCAGCCGATG

T BIMIFP T L HB o 2R M T

Note: The underline primer sequence represents restriction site
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Fig. 1 Construction of ¢cpxR-4 mutant strain
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Tab. 2 Primers used in qRT-PCR

EIEZE R G752l ih AL A
Primers Sequences (5—3") CDS
cpxR-F  GCTGCTGGACGTGATGATGC CpxR
cpxR-R  CGTTGACCCGATCCTGGC
cpxA_F GCTGTTGCTGGTGGTGGC CpxA
cpxA-R  AATCCTGATTGGGGTCTG

16s-F CAACCCCTGTCCTTTGTT 16S rRNA
16s-R TTTGGGATTCGCTCACTA
alt-F TGCTGGAGCTGAGCTTTG Alt
alt-R CTGTCCTTGAGGGAGTCG
hly-F GATGGCATCGGTGGCATA Hly
hly-R CGCTGGACGAAGAGTCGG
aer-F TAACCCGGCCCCATTATT Aer
aer-R CGGCAGAGCCCGTCTATC
env-F TCTCCTATGCCACCTTCT EnvZ
env-R ~ TCGGCGTCTTCACTCAAC
omp-F  TCAGGCTGAAGTTCTCAC OmpR
omp-R  AATACAAGGTTCTGGTCG
QseB-F  GTCACGGGCGGTGAGGAT QseB

QseB-R TCAAGAGCGAGGAGTTTG
QseC-F  GAGATGAGCCACCACAGC QseC
QseC-R  CAACAACGTCACCAAGGA
dsbA-F  TTCCTTGCTGCCATGCTG DsbA
dsbA-R  GTTGGGCGCTACCGGTCT
RpoE-F  TTCGCCACCGCCATAGTA RpoE
RpoE-R  CGCAGGAGGCATTCATCA

ExbD1-F  CTGCTTGTCTGGCTGGTT ExbD1

ExbD1-R  TGGTGCTGCTCATCGTCT
b561-F  GAGCATCAGGGGGGAGAG B561
b561-R  ATGGAGTTCAGGGACATC
FimAF AAGTGGGGAAGAGATCGTG FimA
FimAR ATAAAGTCGGCGGAGGCAT
PiIAF  GAATTGATGATCGTGGTCG PilA
PiIAR  CGCTGTTGCTATGTTTGCC
yefSF  GTCGATCCCTATTTGCCAA YcfS
yefSR CACCATCACCTCGTTTTTA
HK-F CGCAGCAGAGCCATCCACAA Histidine

HK-R AGTCCGCCGATCCACCACAT kinases
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Fig. 2 Construction and identification of cpxRA mutant strain
EIAS, M1. DL2000 Marker; 1. 2. FU#FEEFL; 3. 4. FigABEF2; 5. 6.4 A BFIF2; EBH, 1—3/2 5 41 Uk pRE-Acpx AU 1 (1)
3ANE A, M1. DL2000 Marker; ICH', M1. DL2000 Marker; M2. DL5000 Marker; 1—4. Plcpx-incheckF/R N5 #JPCRY1#; 5—8. Llepx-
50/30 45 #PCRY™1; 9—12. Lhcpx-outcheckF/RAZIMPCRY™H; 1. 2. 5. 6+ 9. 10. LAEF A RRIE K L AMARPCRY 14; 3. 4. 7.

8. 11, 12.DATAR#RIE K 2 AR PCR Y 3

Fig. A: M1. DL2000 Marker; 1, 2. Upstream fragment F1; 3, 4. downstream fragment F2; 5, 6. fusion fragment F1F2; Fig.B: 1—3.
recombination plasmid pRE-Acpx; M1. DL2000 Marker; Fig.C: M1. DL2000 Marker; M2. DL5000 Marker; 1—4. PCR amplification using
cpx-incheckF/R as primers; 5—8. PCR amplification using cpx-50/30 as primers; 9—12. PCR amplification using cpx-outcheckF/R as

primers; 1,2, 5, 6,9, 10. PCR amplification using wild strain genome as template; 3, 4, 7, 8, 11, 12. PCR amplification using mutant genome

as template
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Fig. 3 Identification of cpxRA complementary strain
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template; A. PCR amplification using mutant genome as template;
p- PCR amplification using complement plasmid pACYC-CAcpx
as template; M. DL5000/2000 Marker
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Fig. 4 SEM images of strains
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Fig. 8 The growth curve of strains in different stimulus
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Tab.3 The cumulative death of zebrafish injected A. hydrophila strains by intraperitoneal

e . AL % .
ﬁi Vﬁiﬁﬁfg(cfgﬁ%) Cumulativ/e death number ) %*’E‘[%E,% 0
Strain Concentration 1 5 3 4 5 6 7 Cumulative mortality rate (%)
Wild 6450 1 14 15 15 15 15 15 100
3225 0 12 13 13 13 13 13 86.67
1613 1 6 12 12 12 12 12 80
807 0 7 7 7 7 8 8 53.33
Acpx 6600 1 13 15 15 15 15 15 100
3300 3 12 13 14 14 14 14 93.33
1650 2 11 11 11 11 11 73.33
825 0 9 9 9 9 9 60.00
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Fig. 10 Related genes expression level
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CONSTRUCTION AND BIOLOGICAL CHARACTERISTICS ANALYSIS OF
CPXRA MUTANT IN AEROMONAS HYDROPHILA

ZHANG Lan-Li"’, ZHANG Qian-Qian"’, CHEN Hui', WANG Xie-Hao"’, WU Zhen-Bing ",
FENG Yu-Qing"” and LI Ai-Hua"’
(1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan
430072, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Freshwater Aquaculture Collaborative

Innovation Center of Hubei Province, Wuhan 430070, China; 4. Fisheries Technology Extension Center in Jiangsu province,
Nanjing 210036, China)

Abstract: To investigate the roles of two Cpx component systems in the growth and virulence of Aeromonas hydro-
phila, we constructed the cpxRA gene cluster mutant Acpx with the deletion of 57—1879 bp using suicide plasmid
pRE112 as the vector. This procedure was based on fusion PCR and gene homologous recombination principles.
Through electrophoresis and fluorescence quantitative PCR, the partial deletion of the cpxRA gene cluster in the mutant
was confirmed. Then we compared the differences between mutant and wild strains in biological characteristics includ-
ing growth, biofilm formation, stress tolerance and virulence. The results showed that the mutant had no signifi-
cant difference with the wild strain in morphology, growth, biofilm formation and virulence. The main differences exis-
ted in the response to high osmotic pressure, SDS (Sodium dodecyl sulfate), EDTA (Ethylene Diamine Tetraacetic
Acid) and polymyxin B stimulation. This study reveals that the Cpx system of Aderomonas hydrophila is involved in the
response to external stimulus factors, and plays a relatively minor role in virulence.

Key words: Aeromonas hydrophila; cpoxRA; pRE112; Stress tolerance



