FAa2EE I
2018 &£ 5 H

KE A& Y R
ACTA HYDROBIOLOGICA SINICA

Vol.42, No.3
May, 2018

doi: 10.7541/2018.074

185 shaY U s SEM 5

G v

T A T 5

(1. B AR EN Y R G000 R S AL Bl R RS0 %, B 2013065 2. b R 2 R B v AR 27 [ BRIk 45
FeHL, L3 201306; 3. IR RS K R B KSR AR G, L 201306)

WE: PV R BALIC K HE AR T # E fili(Sebasticus marmoratus) IV 3 B{E . B RV A R 4;
TESR AN AT T 8 R e B M o) A1 2R 1 L 75 100—1000 Hz ¥ 781 A [F]A5128 [1) 75 & 05 R FBAL )R B . &5 RS2 1A,
5 B ik 1T i R YR A L B S AR I T 0, X 100—300 Hz A0 7= 515 5 BUK, mBURSiZ 150 Hz,
X I R W (R EL A1 70 dB e 1 wPa. #a i il R Ui it BUEK X ] 55 5 e P A0 B A PR A D T 12, 2 BH JHC A RS Uit
HIEENE, [FE, AR AR Rl R xS 5 7 TRAC i B o

R W Bty WISy RIS WU
EHRES: 1000-3207(2018)03-0593-06

hEES: Q437 SCHRFRIRED: A

K MR 5 G AT A SR A 32 SR I A B T
i) @, G H A >R E s A AR S A AN B XL
fEATE Y5 g H 2 e . A KT LIy Bk
HUKH S EES, b, FAESERLME. &
FOATE . M E Gk B SR AT A AR
PRI, T K T e A AN 2 i 5 25 Bk AT A
AR AR, T2 ot it SR 0T v SR Ay
AR AN N 15 AL RN N3 A K < N
WEF A FEANEE ATy, K AT T R 2 5 e H
A R B BEIARSE I AE S ThRESE

6 B fif (Sebasticus marmoratus) & . {3
BHEEE, T A TIRE AR IR, BARET
RSB SOMZFNED . T E T R A TR
S5 NI BN )00, # B il TS S a R 32 2 P E
o2 ek, HE AR BT R ORI N B, S E
B IT AR . BT B 9 2 0, 48 o v it
1 LA 7 AT R ) A s T ke,
AT R 7K AR = AR B 7K T MR RS DA R A A e s ) T
RE T P TS T A — o B 52 . A E i 7Y
WP i, U 1 e P Aty 7K T R R Sk H 5 ) )
o Lee5" 8 R AT AYIML A4 T RO AR

ks B HA: 2017-06-22; 1&3T H#A: 2017-12-27

BT T 4 B T D BRAEL . SR T, SX Fh 7 A TR B8k
36t 2858 — B K BRI 5 AR sl AR B ) 7 5 (S
RIS, A RO S LS BG X G R W AR
. B #T, Wit i & AL AL (Auditory Evoked Poten-
tial, AEP)/F Jy— Pl 4 P ) F AR BRER T 32 B
FH T # SR 0T 52 77 T 69 %% Rt e it R, A
W58 5 A B ASE V20T 7848 & fih 1) W 5 0L, DA
8 FL T B UM, 0E — 25 B AR L S HAZ AL AR
BRIE RPEHLR, I 97K M7 0 48 5 £ SR I 52 e T
IR 2 s .

1 #MR57EE

1.1 SIHR

S FH A6 B il i T 48 A LA AT 5(30°42/48"N,
122°46'42"E) Pt 1t i 38R FH w2 B B B R 314,
4K7.3—13.2 cm, F#J(10.3£2.1) cm, fAFE30—
60 g, “F14(45.3£12) go SIS 2RI = %
75, H IR K AE AL N100 cmx40 cmx45 cm, /KRN
22-24°C, IEH BB . ARYEE E fih =4 5 1 11
Rk, B 72K N CE 2 A FUBREUE R HAR B
FT o 7 3% HT 1) $52 PN I 5 4 SR ) DA B /) %

£ ETH: HK 8RR (41406150); H 5 H 5051 70k @111 (2011CB111608) %t ) [Supported by the National Natural Science
Foundation of China (41406150); National Basic Research Program of China (2011CB111608)]

EE BT TRI6(1980—), Y3, WEFRMEZ N 1Ly E BN R ARG E 517 W5 . E-mail: xg-zhang@shou.edu.cn

BIE1EE: RN, B-mail: jksong@shou.edu.cn; #5542, E-mail: hy-guo@shou.edu.cn


http://dx.doi.org/10.7541/2018.074

594 K& A& Y ¥ 42 %

o SRIGHT, PRIRTCAME, A D7 E AT s
B . SCESRITRFH0.1%IMS-222 FR i 3—5min, JF7E
SR 1 50 S o b i e 0 LR TS 30, 2N
2—4 pg/g(PR ), A WA 08 55 250w 3

1.2 AEPicH

S G 38 Ik ] IR e R A ] e 7 SE 56 KR Hh
(r=15 cm), FiE I B E 1 &E ARKHAT N THER,
AR g2 86 fo g U P KR R T TR
E(2.5mx2.5mx2m, FEAEEYANDES
(ZDTO07-07, YLVGERE) b o B = S SR
725 dB(_ LW E).

SO, A8 A Sk 0 & K T 1—2 mm, id
% B (Rochester Electro-Medical, 38 [F) & T k&
IrR a2k b, 28l 5 . S il E T id Bl aT
Ji1—2 emkb o 24N HLBR 2R I 40 T SR ] T R
S S < R | S 75 NI A < == LI O N
W T AR A BB A T B BUOK 85 (RA4LI,
Tucker Davis Technologies TDT, 3% [&), il id Y £F
S5TDTWr 34 ¥ TAE B (RZ6, N B B H B A5 5
[, TDT, 3 [E)MiE .

7535 A B SigGenRZ (TDT, 3 )%
H. FHEKENI00. 150, 200, 300. 500. 800.
1000 Hz. 75 % B 2 (Duration) N 12ms, & 2msiti%
(rase/fall), AJg/> 75 S H IR . F &5 5mid
DR A(DTSA, Crown, J [E) iy 22 7 T 7K H S
H K T #7725 (UW-30, University Sound, 3£ [H).
SEOG A PR B K N 75 2% 18 em, 7K PN (1) S2BR A 3
55, HE T A H T KYr 238103, B&K,
)T SR I W A S T I A TEOK
#5(2692, B&K, P12 ) NTDTHUBL G i b . 5K
55 PRI AEBPS 54 UR S, W ANTD T 5%
Pk, IF H % FBigSigRZ (TDT, 3 H) [H 5 %17
FHEES 5AEPE 5.

S 6 T 5 R A 52 7 15 5 Kenyon 25 AR,
SO0 I 52 B 2 AN AR A s RIS ¥, 430l 1900 A
270°, 4 FEE AT R I AL R A A, B
AN IERR I AEP SN o 75 35 i) B 152 B A A
110560 dB, &KX LA3 dBi#IK, FH & A A] 724 ff &
STIIAEPYE T, B X 87 (1 503875 5 1 75 R G B
AR AT Y SRR R 1 2R
Tk 7K T A T SR 1 P U AR T 28 4% 1E R A 3L (A
i 5E -

2 4R

2.1 BEHAEPREYFE
SEIG T 845y B il 34T T AEPIIR . 2N AH AL

FH IS )7 3 5 R B AEPYR T v] DL AR A (]
1), 1 H2/NAEPHTE 2 8] i H A 5 REU(RE) B3
110 AELIE 5 58 (Y B AIR, ABPUETE 1) H AH G R
H(RAA) W IZ T BEAG 5 R0 B K, HERIELAE
0.7—0.9 ¥ 3h, MW o A, HRE ST
B, (B AT R I — 5 W R MR o AEP O SE P
TR FEE b0 [t 6 0 5 5 P 11 AR T ik 553, 308 0 I o2 i
FEREZ10—20 wVZc A7 B, 5 2t H2 0T Wy o 3 4
1T AEP B A 55 78 35 A AL TE i v 1,
FAEPH L AR E AW, B TCAEP N, HR{E 7]
REREIL SR T2

FR 4 9% T2 TR 45 A3, 48 B Bl AEPI T W] 20 A
32K(E 2). —FKA2E100 HZARHE 515 K I AEPYK
o, WM T RELWH BT %; &8 ke
150—300 Hzifs & FIAEPH I, B S0 & 7= A 1/ A T
TAEL 1) B Ay 0, 7RI AN B A b AT g H I 2 A
) B I g, X LA RE T 6 2 1Y) 1 ) 0 2 — 2K
500—800 Hzifs & [ AEPH E B Yo A& — AT T3
LR IE AR, BHE — AR IB ) a0

ey & il AEPYE T K o) — AN 3 AR RHIE 2 AEP )R
AT J LT 2 ORI P . 4l 3T, 150 Hz
(1) 7 B A5 5 7R KR v R S FR AR S 143 Hz, FLX
(1) AEPJE T (P8 H A7 AE BT A% ¢ R 111287 Hz
ARG, T 55 —AN597 Hz 4TS 06 U 7T Gk B 7 &
G262 Hz M S EAR G 5. XMPAE R RN
R S T R B NP 2 B T B AR (] 2).
22 EEtHITHE

SEIR A SR T 8 )R E il X 100—1000 HzfE 41
TR AEP SN o K 8 FE AR S fifh 7E 25 I B A 2R R
AT B BB T35 J5, W45 H A B ik (1) U ) it 28
BI( 4, AEP). ARFEWT 77 26 &, e E il Wy 77 ith
£R1E100—1000 Hz [ 404 3 F Py 2 248 v b7, Wr
I L i 75 5 A0 () 488 i 38 o, B BE S S AR T
BN, A E kT b BRI PR . AT
55 B, ZR JEH 100—300 Hz, H Wi 5
fHN70—79 dB, H A B BUR A 150 Hz, %I
B R4 9 (70£1.1) B, %F500 Hz L b f) 75 3585
TR 2, HW bt A 890 dBLA .
3 Wig

H R, W51 & ALV (AEP) 2t 5 A A ) B
B BB R S R 2T S A 7l . R
FEGE AT N2 I 5 iR B 3L e G 1 e A BV,
AEPTTETE T X6t s WK A 90 B AT B 38 v
A, B s, wrEE R A" . A



33 FRIE G A o S iy AT W R L F 595

250 nV

54.0 dB (JC < bz no response)

R=0.01

LS P

BE a6} i Dead fish

T e T S e T T S T S N T S S S e T T D —

20 25 30

[kt ] Time (ms)
1 A RIS AR 30 5 75 4 F 46 5 il ABPYY T
Fig. 1 AEP wave forms of marbled rockfish in response to 100 Hz tone bursts at stimulus levels from 86.9 dB to 54 dB with starting phases

0f 90° and 270°, respectively
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Fig.2 AEP wave forms of marbled rockfish in response to tone bursts with different frequencies
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THRESHOLDS FOR THE HEARING OF MARBLED ROCKFISH SEBASTICUS
MARMORATUS

ZHANG Xu-Guang">*, GUO Hong-Yi"”® and SONG Jia-Kun"*

3

(1. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306,
China; 2. International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and
Technology, Shanghai 201306, China; 3. Shanghai Universities Key Laboratory of Marine Animal Taxonomy
and Evolution, Shanghai Ocean University, Shanghai 201306, China)

Abstract: The thresholds for the hearing of marbled rockfish (Sebasticus marmoratus) were studied using the auditory

evoked potential (AEP) technique. The AEP responses to seven different sonic stimulations, whose tone burst frequen-

cies are between 100—1000 Hz, from eight fishes were recorded by two subcutaneous electrodes (Tucker Davis Tech-

nologies). Our results showed that marbled rockfish were sensitive to the low frequency sounds ranging from 100 to

300 Hz, and the most sensitive sound frequency is 150 Hz, corresponding to the lowest hearing threshold of 70 dB re

1 pPa. The dominant frequency of the fish sound matches with their sensitive sound frequency range, which indicates

that marbled rockfish are able to detect their own sounds, and the importance of acoustic communication among them.

Meanwhile, low-frequency anthropogenic noise may affect their acoustic communication.

Key words: Marbled rockfish; Noise pollution; Acoustic communication; Hearing sensitivity



