doi: 10.7541/2018.138

SPATIAL PATTERN OF FISH ASSEMBLAGES ALONG THE RIVER-RESERVOIR GRADIENT CAUSED BY THE THREE GORGE RESERVOIR (TGR)

LIN Peng-Cheng^{1,2}, LIU Fei^{1,2}, LI Ming-Zheng^{1,2}, GAO Xin^{1,2} and LIU Huan-Zhang^{1,2}

(1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 2. Key Laboratory of Aquatic Biodiversity and Conservation Institute of Hydrobiology, Institute of Hydrobiology Chinese Academy of Sciences, Wuhan 430072, China)

Abstract: We analysed spatial pattern in the fish assemblage structure along a longitudinal gradient of the Upper Yangtze River and the Three Gorges Reservoir. We tested the hypothesis that shifts from lotic to lentic environment affect the richness and structure of the fish assemblage. Samplings were carried out from 2005 to 2012 in four zones:(1) Hejiang reach, river upstream from the reservoir; (2) Mudong reach, upper part of the reservoir; (3) Wanzhou reach, middle part of the reservoir, and (4) Zigui reach, lower part of the reservoir. A total of 368706 fish representing 132 native species of 17 families were collected during the study period with Cyprinidae as the dominant group. The results showed that the native species richness decreased while the non-native species increased from river (Hejiang reach) to reservoir (Zigui reach). Patterns in fish assemblage ordination evaluated by correspondence analysis reflected a clear division of the riverine and reservoir zones. Uppermost sampling stations were characterized by species characteristic of flowing waters, whereas in the lowland most lentic species were captured. Further, 22 species, three functional groups (rheophilic, equilibrium, insectivorous) were identified for the upper reach and 16 species, three functional groups (herbivorous, planktivorous, stagnophilic) for the lowland reach by indicator species analysis (P<0.05). Therefore, it is evident that impoundment of the Three Gorges Reservoir is the major driving factor to structuring the fish assemblage structure along the longitudinal gradient from river to the reservoir. Different fisheries management actions should be made to conserve or rehabilitate native fish assemblages and control invasive non-native species.

Key words: Fish assemblages; River-reservoir gradient; Indicator species; Three Gorges Reservoir

CLC number: S932.4 **Document code:** A **Article ID:** 1000-3207(2018)06-1124-11

Reservoirs are managed ecosystems due to their pronounced environmental gradient; that is, they have limnological properties intermediate between those of rivers and lakes^[1]. Reservoirs created by the damming of deep river valleys typically have an elongated morphology and, due to the influence of river inflows, they often show pronounced internal longitudinal gradients in their physicochemical conditions^[2-4]. Along such gradient, the upstream region of dams can be divided into three distinct zones: a upstream rive-

rine zone, a transitional zone and a deep lacustrine zone close to the dam^[1]. Because of this gradient, local fish assemblages can be organized across space, since each species has different tolerance limits that vary across environmental gradients^[5].

The literature demonstrates that river damming and impoundments cause habitat loss, change fish reproductive environments, and cut off migration routes, resulting in a substantial decline of biodiversity^[6-8]. The dominance of non-native species in the new en-

Received date: 2016-12-13; Accepted date: 2018-01-12

Foundation item: Supported by the Three Gorges Project eco-environmental monitoring system (JJ[2016]-007); the National Natural Science Foundation of China (51509239)

Brief introduction of author: Lin Peng-Cheng (1985–), male, born in Hubei; research assistant; major in ecology of freshwater fish. E-mail: linpc@ihb.ac.cn

Corresponding author: Liu Huan-Zhang, E-mail: hzliu@ihb.ac.cn

vironment is another concern because reservoirs often shift from native-dominated stream fishes to nonnative invasive-dominated fish assemblages^[9]. Thus, a detailed understanding of spatial pattern of fish assemblages in a particular reservoir along the riverreservoir gradient is valuable to both fishery management and native species conservation. A manager should, based on local and regional studies, identify any alterations in the structure of the local fish assemblage and take action to avoid irreversible losses of regional biological diversity and/or natural resources as a consequence of river damming^[10]. However, most studies have focused on the direct downstream effects on fish assemblages, rather than the upstream impacts^[11, 12]. This is because changes produced in the former are sudden, conspicuous and frequently dramatic^[13]

The Three Gorges Reservoir (TGR) is the largest impoundments ever created in China. With an area coverage of 1080 km², the Three Gorges Reservoir extends for over 600 km upstream on the Yangtze River, including areas with the habitat and spawning grounds of many rare, endemic, and commercial fishes, such as Chinese sucker (*Myxocyprinus asiaticus*), *Coreius guichenoti*, black carp (*Mylopharyngodon piceus*), and grass carp (*Ctenopharyngodon idella*)^[14, 15]. Studies reporting initial ecological impacts of the impoundment of TGR on fish assemblage have already been published. However, many of these

studies have been limited to the impact examinations on riverine reaches and sole region for the putative changes in species composition and numbers^[15—18]. Studies of spatial pattern of fish assemblages along the river-reservoir gradient are scarce and patterns in fish assemblages are rarely considered in management plans.

Therefore, the aims of the present study were to demonstrate spatial patterns of fish assemblages along the river-reservoir gradient and to identify indicator fish species and functional group for each zone. We tested the hypothesis that shifts from lotic to lentic environment affect the richness and structure of the fish assemblage. Through our study, we hope to provide insights into the overall cumulative effect on fish resources of China's massive hydroelectric development plans and management suggestion for the upper Yangtze River fish.

1 Materials and Methods

1.1 Study area and sampling

Fish sampling was conducted at four reaches in the main channel of the upper Yangtze River: Hejiang (28°48′N, 105°50′E), Mudong (29°34′N, 106°50′E), Wanzhou (30°50′N, 108°22′E) and Zigui (39°99′N, 110°69′E) (Fig. 1). Hejiang reach locates in the upper Yangtze River, about 100 km upstream of the backwater of the TGR (175 m ASL). Mudong reach locates in the upper part of the TGR, where is a

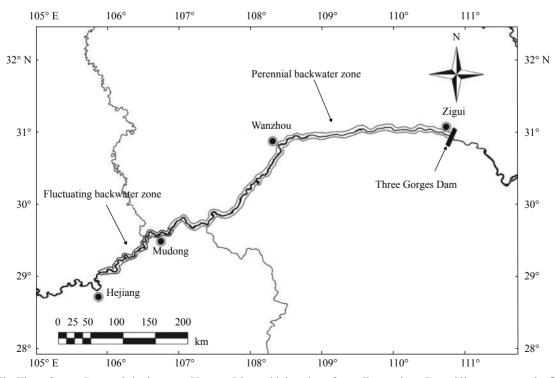


Fig. 1 The Three Gorges Reservoir in the upper Yangtze River with location of sampling stations. Dotted lines represent the fluctuating backwater area and the gray lines represent the perennial backwater area

typical transitional zone. Wanzhou reach locates in the middle part of the TGR, where has been inundated as a lacustrine pool by the first filling in 2003, while Zigui reach locates in lower part of the TGR, just one kilometer away from the Three Gorge Dam (TGD). Both of them locate in the lacustrine zone of TGR.

The fish investigations were conducted each year from 2005 to 2012 (except Mudong in 2005 and Zigui from 2005 to 2007). Fish sampling methods were followed in Zhu and Chang (2008) and Yang, *et al.* (2012)^[17, 19]. All the native species sampled in the four sites were classified into 12 functional groups based on habitat preference, trophic and life-history characteristics. Flow preference and trophic characterization was for adult stages following Ding (1994) with modifications based on unpublished data^[20]; the life-history classification follows Cao, *et al.* (2007) and Froese and Pauly (2011)^[21, 22].

1.2 Multivariate analyses

Species abundance-by-site matrices from 2005 to 2012 were analyzed by correspondence analysis (CA) using CANOCO (Version 4.5). CA is an indirect gradient technique that simultaneously ordinates sample and species scores obtained by reciprocal averaging [23]. Species abundances were $\log(x+1)$ transformed before analysis. In our analyses, we downweighted rare species and selected Hill's scaling option. Only the first two canonical axes from these multivariate analyses were retained for interpretation. To determine if assemblage structure differed significantly among sites, the non-parametric Kruskal-Wallis test was performed using sample scores from the first two CA axes as dependent variables and site as a categorical variable.

Indicator species analysis (ISA) was also conducted in PC-ORD 5.0 to identify particular species and functional groups that best discerned along the river-reservoir gradient^[24]. ISA measures the relative abundance and exclusivity of a particular species or functional group in a region. The ISA was used to supplement the MRPP as an additional measure of taxonomic and functional group distinction among a priori selected study regions^[25]. Species indicator values range from 100 for a perfect regional indicator to 0 for a poor regional indicator. The significance of species indicator values was obtained from Monte Carlo simulations with 5000 randomizations.

2 Results

2.1 Fish richness

A total of 363598 specimens were captured, belonging to 132 native species and 17 families (Tab. 1).

Cyprinidae had the greatest number of species (77), followed by Cobitidae (17), Bagridae (10) and Homalopteridae (4). Among them, 109, 96, 93 and 79 native species were collected from Hejiang, Mudong, Wanzhou and Zigui, respectively. Further, 17 nonnative species were captured: Protosalanx hyalocranius, Salangichthys tangkahkeii, Hemisalanx brachyrostralis, Acipenser schrenckii, Polyodon spathala, Huso duricus×Acipenser schrencki, Tinca tinca, Megalobrama amblycephala, Cirrhinus molitorella, Ictalurus punctatus, Micropterus salmoides, Tilapia sp., Lucioperca lucioperca, Clarias leather, Colossoma brachypomus, Ameiurus melas and Gambusia affinis. The non-native species amounted to 0.04%, 0.02%, 0.30% and 6.07% of the total number of individual fish in Hejiang, Mudong, Wanzhou and Zigui, respectively. Among them, the non-native species (P. hyalocranius, I. punctatus, M. amblycephala, Tilapia sp.) amounted to 96.8% of the total number of nonnative species when considering all sampled zones. The results showed that interannual number of native species decreased while the non-native species increased from river (Hejiang reach) to reservoir (Zigui reach) (Fig. 2).

2.2 Spatial pattern of fish assemblage composition

Ordination showed major spatial pattern of fish assemblage composition along the river-reservoir gradient based on the fish abundance. The first CA axis (eigenvalue = 0.390) ordinated samplings in two main groups (riverine and reservoir samplings) with significant differences between score values (Kruskal-Wallis test, P < 0.01) (Fig. 3). For the second CA axis (eigenvalue=0.118), significant difference was found only between Wanzhou reach and Zigui reach (Kruskal-Wallis test, P<0.01). Samplings with high Axis I scores were composed of species associated with reservoirs (e.g. Xenocypris argentea, Hemiculter bleekeri and Parabramis pekinensis), while samplings with low Axis I scores contained species more characteristic of flowing waters (e.g. Jinshaia sinensis, Rhinogobio ventralis, and Rhinogobio cylindricus, Coreius guichenoti).

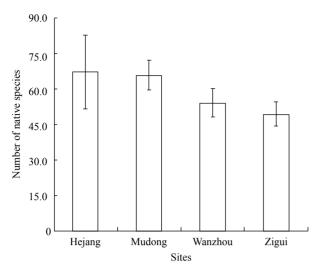
According to the Indicator Species Analysis (ISA), 38 out of the 132 examined species showed significant indicator values (*P*<0.01, Tab. 2). The species with high indicator values of Hejiang reach are Lepturichthys fimbriata, Leptobotia rubrilabris and Jinshaia sinensis. Indicative species of Mudong reach are Rhinogobio cylindricus, Ancherythroculter nigrocauda, Pseudogobio vaillanti and Siniperca kneri. For Wanzhou reach, there are Acrossocheilus monticolus, Culter mongolicus mongolicus and Hemiculter

Tab. 1 List of species among sampling reaches.

Scientific name	Family	Abbreviation	HJ	MD	WZ	ZG
Anguilla japonica Temminck et Schlegel	Anguillidae	Ajap	*		*	
Zacco platypus (Temminck et Schlegel)	Cyprinidae	Zpla	*	*	*	*
Opsariichthys bidens Günther	Cyprinidae	Obid	*	*	*	*
Aphyocypris chinensis Günther	Cyprinidae	Achi	*			
Mylopharyngodon piceus (Richardson)	Cyprinidae	Mpic	*	*	*	*
Ctenopharyngodon idellus (Cuvier et Valenciennes)	Cyprinidae	Cide	*	*	*	*
Phoxinus oxycephalus Sauvage et Dabry	Cyprinidae	Poxy				*
Squaliobarbus curriculus (Richardson)	Cyprinidae	Scur	*	*	*	*
Elopichthys bambusa (Richardson)	Cyprinidae	Ebam		*	*	*
Pseudolaubuca sinensis Bleeker	Cyprinidae	Psin	*	*	*	*
Pseudolaubuca engraulis (Nichols)	Cyprinidae	Peng	*	*	*	*
Sinibrama taeniatus (Nichols)	Cyprinidae	Stae	*		*	
Ancherythroculter kurematsui (Kimura)	Cyprinidae	Akur	*	*	*	*
Ancherythroculter wangi (Tchang)	Cyprinidae	Awan	*	*		
Ancherythroculter nigrocauda Yih et Woo	Cyprinidae	Anig	*	*	*	*
Hemiculterella sauvagei Warpachowski	Cyprinidae	Hsau		*		
Hemiculter leucisculus (Basilewsky)	Cyprinidae	Hleu	*	*	*	*
Hemiculter tchangi Fang	Cyprinidae	Htch	*	*	*	*
Hemiculter bleekeri Warpachowski	Cyprinidae	Hwar	*	*	*	*
Cultrichthys erythropterus (Basilewsky)	Cyprinidae	Cery	*	*	*	*
Culter alburnus Basilewsky	Cyprinidae	Calb	*	*	*	*
Culter mongolicus (Basilewsky)	Cyprinidae	Cmon	*	*	*	*
Culter oxycephalus Bleeker	Cyprinidae	Coxy		*	*	*
Culter dabryi Bleeker	Cyprinidae	Cdab		*	*	*
Culter oxycephaloides Kreyenberg et Pappenheim	Cyprinidae	Coxc		*		
Parabramis pekinensis (Basilewsky)	Cyprinidae	Ppek	*	*	*	*
Megalobrama pellegrini (Tchang)	Cyprinidae	Mpel	*	*	*	
Xenocypris argentea Günther	Cyprinidae	Xarg		*		*
Xenocypris davidi Bleeker	Cyprinidae	Xdav	*	*	*	*
Xenocypris fangi Tchang	Cyprinidae	Xfan			*	
Xenocypris microlepis Bleeker	Cyprinidae	Xmic	*		*	
Pseudobrama simoni (Bleeker)	Cyprinidae	Psim	*	*	*	*
Aristichthys nobilis (Richardson)	Cyprinidae	Anob	*	*	*	*
Hypophthalmichthys molitrix (Cuvier et Valenciennes)	Cyprinidae	Hmol	*	*	*	*
Hemibarbus labeo (Pallas)	Cyprinidae	Hlab	*	*	*	*
Hemibarbus maculatus Bleeker	Cyprinidae	Нтас	*	*	*	*
Pseudorasbora parva (Temminck et Schlegel)	Cyprinidae	Ppar	*	*	*	*
Sarcocheilichthys sinensis Bleeker	Cyprinidae	Ssin	*	*	*	*
Sarcocheilichthys nigripinnis (Günther)	Cyprinidae	Snig	*	*	*	*
Gnathopogon herzensteini (Günther)	Cyprinidae	Gher	*			
Gnathopogon imberbis (Sauvage et Dabry)	Cyprinidae	Gimb	*	*		
Squalidus argentatus (Sauvage et Dabry)	Cyprinidae	Sarg	*	*	*	*
Squalidus wolterstorffi	Cyprinidae	Swol			*	
Coreius heterodon (Bleeker)	Cyprinidae	Chet	*	*	*	*
Coreius guichenoti (Sauvage et Dabry)	Cyprinidae	Cgui	*	*	*	
Rhinogobio typus Bleeker	Cyprinidae	Rtyp	*	*	*	*
Rhinogobio cylindricus Günther	Cyprinidae	Rcyl	*	*	*	*

Continued Tab 1

					Conti	nued Tab.1
Scientific name	Family	Abbreviation	HJ	MD	WZ	ZG
Rhinogobio ventralis (Sauvage et Dabry)	Cyprinidae	Rven	*	*	*	
Platysmacheilus nudiventris Lo, Yao et Chen	Cyprinidae	Pnud	*	*		
Abbottina rivularis (Basilewsky)	Cyprinidae	Ariv	*	*	*	*
Abbottina obtusirostris Wu et Wang	Cyprinidae	Aobt	*		*	
Microphysogobio kiatingensis (Wu)	Cyprinidae	Mkia	*	*	*	*
Pseudogobio vaillanti (Sauvage)	Cyprinidae	Pvai		*		
Saurogobio dumerili Bleeker	Cyprinidae	Sdum			*	
Saurogobio dabryi Bleeker	Cyprinidae	Sdab	*	*	*	*
Saurogobio gymnocheilus Lo, Yao et Chen	Cyprinidae	Sgym	*	*	*	*
Gobiobotia (Gobiobotia) filifer (Garman)	Cyprinidae	Gfil	*	*	*	*
Xenophysogobio boulengeri Tchang	Cyprinidae	Xbou	*	*		
Xenophysogobio nudicorpa (Huang et Zhang)	Cyprinidae	Xnud	*			
Rhodeus sinensis Günther	Cyprinidae	Rsin	*	*	*	*
Rhodeus ocellatus (Kner)	Cyprinidae	Roce	*	*	*	*
Acheilognathus macropterus (Bleeker)	Cyprinidae	Amac	*	*	*	*
Acheilognathus omeiensis (Shih et Tchang)	Cyprinidae	Aome	*		*	
Acheilognathus chankaensis (Dybowski)	Cyprinidae	Acha		*	*	*
Spinibarbus sinensis (Bleeker)	Cyprinidae	Ssie	*	*	*	*
Acrossocheilus monticolus (Günther)	Cyprinidae	Amon	*	*	*	
Acrossocheilus yunnanensis (Regan)	Cyprinidae	Ayun	*			
Onychostoma sima (Sauvage et Dabry)	Cyprinidae	Osim	*	*	*	*
Tor (Folifer) brevifilis brevifilis (Peters)	Cyprinidae	Tbre	*			
Bangana rendahli (Kimura)	Cyprinidae	Bren			*	
Pseudogyrinocheilus procheilus (Sauvage et Dabry)	Cyprinidae	Ppro	*	*	*	*
Garra pingi pingi (Tchang)	Cyprinidae	Gpin	*			*
Schizothorax (Schizothorax) wangchiachii (Fang)	Cyprinidae	Swan	*			*
Schizothorax (Schizothorax) prenanti (Tchang)	Cyprinidae	Spre			*	
Schizothorax (Schizothorax) chongi (Fang)	Cyprinidae	Scho	*			
Procypris rabaudi (Tchang)	Cyprinidae	Prab	*	*	*	*
Cyprinus (Cyprinus) carpio Linnaeus	Cyprinidae	Ccar	*	*	*	*
Carassius auratus (Linnaeus)	Cyprinidae	Caur	*	*	*	*
Myxocyprinus asiaticus(Bleeker)	Catostomidae	Masi	*	*	*	*
Yunnanilus sichuanensis Ding	Cobitidae	Ysic	*			
Paracobitis variegatus (Sauvage et Dabry)	Cobitidae	Pvar	*	*		*
Paracobitis potanini (Günther)	Cobitidae	Ppot	*			
Paracobitis wujiangensis Ding et Deng	Cobitidae	Pwuj	*		*	
Triplophysa (Triplophysa) angeli (Fang)	Cobitidae	Tang	*			
Botia superciliaris Günther	Cobitidae	Bsup	*	*	*	*
Botia reevesae Chang	Cobitidae	Bree	*	*		*
Parabotia fasciata Dabry	Cobitidae	Pfas	*	*	*	*
Parabotia bimaculata Chen	Cobitidae	Phim		*		
Leptobotia elongata (Bleeker)	Cobitidae	Lelo	*	*	*	*
Leptobotia taeniops (Sauvage)	Cobitidae	Ltae	*	*	*	*
Leptobotia pellegrini Fang	Cobitidae	Lpel	*	*	*	
Leptobotia microphthalma Fu et Ye	Cobitidae	Lmic		*		
Leptobotia rubrilabris (Dabry)	Cobitidae	Lrub	*	*		
r	230111440	2. 40				


					Conti	nued Tab
Scientific name	Family	Abbreviation	HJ	MD	WZ	ZG
Misgurnus anguillicaudatus (Cantor)	Cobitidae	Mang	*	*	*	*
Paramisgurnus dabryanus Sauvage	Cobitidae	Pdab	*		*	
Lepturichthys fimbriata (Günther)	Homalopteridae	Lfim	*	*		*
Jinshaia sinensis (Sauvage et Dabry)	Homalopteridae	Jsin	*	*		*
Sinogastromyzon sichangensis Chang	Homalopteridae	Ssic	*			
Sinogastromyzon szechuanensis Fang	Homalopteridae	Ssze	*	*	*	
Pelteobagrus fulvidraco (Richardson)	Bagridae	Pful	*	*	*	*
Pelteobagrus eupogon (Boulenger)	Bagridae	Peup	*	*	*	*
Pelteobagrus vachelli (Richardson)	Bagridae	Pvac	*	*	*	*
Pelteobagrus nitidus (Sauvage et Dabry)	Bagridae	Pnit	*	*	*	*
Leiocassis longirostris Günther	Bagridae	Llon	*	*	*	*
Leiocassis crassilabris Günther	Bagridae	Lcra	*	*	*	*
Pseudobagrus truncatus (Regan)	Bagridae	Ptru	*	*	*	*
Pseudobagrus emarginatus (Regan)	Bagridae	Pema	*	*		
Pseudobagrus pratti (Günther)	Bagridae	Ppra	*			
Mystus macropterus (Bleeker)	Bagridae	Mmac	*	*	*	
Silurus asotus Linnaeus	Siluridae	Saso	*	*	*	*
Silurus meridionalis Chen	Siluridae	Smer	*	*	*	*
Liobagrus marginatus (Bleeker)	Amblycipitidae	Lmag	*			
Liobagrus nigricauda Regan	Amblycipitidae	Lnig	*			
Liobagrus marginatoides (Wu)	Amblycipitidae	Lmar	*			
Glyptothorax fokiensis (Rendahl)	Sisoridae	Gfok	*	*	*	
Glyptothorax sinensis (Regan)	Sisoridae	Gsin	*	*	*	
Clarias fusus (Lácepède)	Clariidae	Cfus				*
Oryzias latipes (Temminck et Schlegel)	Oryziatidae	Olat				*
Hyporamphus intermedius (Cantor)	Hemiramphidae	Hint		*	*	*
Monopterus albus (Zuiew)	Synbranchidae	Malb			*	*
Siniperca chuatsi (Basilewsky)	Serranidae	Schu	*	*	*	*
Siniperca kneri Garman	Serranidae	Skne		*	*	
Siniperca scherzeri Steindachner	Serranidae	Ssch	*	*		
Micropercops swinhonis (Günther)	Eleotridae	Mswi	*	*	*	*
Mugilogobius myxodermus (Herre)	Gobiidae	Mmyx	*			
Rhinogobius giurinus (Rutter)	Gobiidae	Rgiu	*	*	*	*
Rhinogobius brunneus (Temminck et Schlegel)	Gobiidae	Rbru	*			
Rhinogobius cliffordpopei (Nichols)	Gobiidae	Rcli			*	
Macropodus chinensis (Bloch)	Belontiidae	Mchi	*	*	*	
Macropodus opercularis (Linnaeus)	Belontiidae	Море			*	
Channa argus (Cantor)	Channidae	Carg	*	*	*	*

bleekeri. For Zigui reach, there are *Xenocypris argentea*, *Parabramis pekinensis*, *Siniperca chuatsi* and *Aristichthys nobilis*.

2.3 Spatial pattern of functional characteristics

A different pattern resulted from CA ordination of the functional data set was also observed. In addition to a clear division of the riverine and reservoir zones, CA axis 1 described assemblage habitat preference, trophic composition and reproductive functional groups (Fig. 4). Local assemblages with rheophilic, equilibrium, insectivorous species had the most negative values, whereas sites dominated by periphytivorous, herbivorous, planktivorous, stagnophilic species had the most positive values. Differences between river reaches scores were not significant for CA axis 2 (Fig. 4).

An ISA resulted in 10 functional groups that were significant indicators for all the samplings (Tab. 3).

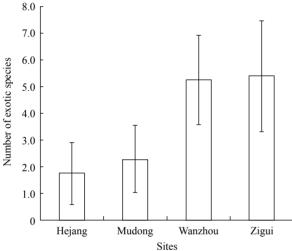


Fig. 2 The interannual number of fish species encountered in each sampling reaches along the longitudinal gradient

The highest indicator functional groups included rheophilic, equilibrium, insectivorous species for riverine regions and herbivorous, planktivorous, stagnophilic species for reservoir regions. These results confirm the CA results that there is some distinct differentiation in fish functional groups along the riverreservoir gradient.

3 Discussion

3.1 Alteration of spatial pattern longitudinally

It is generally accepted that species diversity in natural river ecosystems increases progressively toward the downstream according to the River Continuum Concept^[26]. Contrastingly, the spatial pattern of fish assemblages along the river-reservoir gradient usually showed an opposite trend. In this study, the native species richness decreased while the exotic species increased from river to reservoir, covering a 600 km reach of the upper Yangtze River. Similar fish patterns also have been reported in other reservoirs

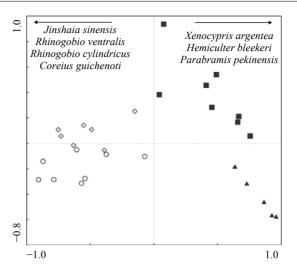


Fig. 3 Correspondence analysis of fish community data across the 28 samplings from 2005—2012 upstream of the Three Gorges Dam

First and second axes had eigenvalues of 0.390 and 0.118 and explained 34.5% and 10.4% of the variation in community structure, respectively. Arrows indicate fish species more correlated with CA1. Legend: Hejiang (\circ), Mudong (\diamond), Wanzhou(\blacksquare), Zigui(\blacktriangle)

and in other countries^[27–29]. As in Itaipu Reservoir, higher fish diversity in the upstream reaches of reservoirs and the reduced richness of the lacustrine zone were founded^[1,30]. The reduced richness of the lacustrine zone may be a result of local and historical processes, like habitat homogenization and wide changes in water level and, consequently, water quality, with a small number of native species being adapted to the new lentic environment^[3].

3.2 Difference in fish assemblage of the three water zones

Reservoirs are human-engineered habitats, and the modification of riverine environment may be working as a species filter that ultimately dictates composition of the fish assemblage^[31]. Only those species with adaptations that fit the available habitats will successfully colonize in different zones.

As a riverine zone, Hejiang reach remained natural flow regime and water temperature. The rheophilous indigenous species that prefer rubble substrates, fast and moderate current velocity habitats, and that have low silt tolerance was dominant species in Hejiang reach, such as *Coreius guichenoti*, *Coreius heterodon*, *Rhinogobio ventralis*, *Rhinogobio cylindricus*. These species are a guild fishes that spawn nonadhesive, semibuoyant eggs. Spawning is believed to occur in response to floods, which increase stream flows and keep the semibuoyant eggs afloat until hatching occurs^[32]. In Mudong reach where river and reservoir conditions overlap, coexistence of species

Tab. 2 Significant fish species based indicator species analysis (ISA) in the upper Yangtze River

Scientific name	Abbreviation	Sites	Value (IV)	P value
Lepturichthys fimbriata (Günther)	Lfim	HJ	97.4	0.0002
eptobotia rubrilabris (Dabry)	Lrub	HJ	93.3	0.0002
Iinshaia sinensis (Sauvage et Dabry)	Jsin	HJ	91.4	0.0002
Glyptothorax sinensis (Regan)	Gsin	HJ	87.9	0.0002
Pseudobagrus emarginatus (Regan)	Pema	HJ	85	0.0002
Botia superciliaris Günther	Bsup	HJ	84.1	0.0004
Kenophysogobio boulengeri Tchang	Xbou	HJ	83.5	0.0002
Paracobitis potanini (Günther)	Ppot	HJ	75	0.002
Sinogastromyzon szechuanensis Fang	Ssze	HJ	74.5	0.0006
Leptobotia elongata (Bleeker)	Lelo	HJ	70.2	0.0002
Rhinogobio typus Bleeker	Rtyp	HJ	66.4	0.0002
Gobiobotia (Gobiobotia) filifer (Garman)	Gfil	HJ	66.3	0.0032
Spinibarbus sinensis (Bleeker)	Ssie	HJ	63	0.0002
Pseudobagrus pratti (Günther)	Ppra	HJ	62.5	0.0032
Liobagrus marginatoides (Wu)	Lmar	HJ	62.5	0.0028
Rhinogobio ventralis (Sauvage et Dabry)	Rven	HJ	61.1	0.0008
Coreius guichenoti (Sauvage et Dabry)	Cgui	HJ	47.6	0.0004
Pelteobagrus vachelli (Richardson)	Pvac	HJ	41.5	0.0006
Rhinogobio cylindricus Günther	Rcyl	MD	63	0.0002
Pseudogobio vaillanti (Sauvage)	Pvai	MD	57.1	0.0072
Siniperca kneri Garman	Skne	MD	56.9	0.0066
Coreius heterodon (Bleeker)	Chet	MD	50.4	0.0002
Acrossocheilus monticolus (Günther)	Amon	WZ	99.3	0.0002
Zacco platypus (Temminck et Schlegel)	Zpla	WZ	76.5	0.0006
Paramisgurnus dabryanus Sauvage	Pdab	WZ	70.8	0.0014
Culter mongolicus (Basilewsky)	Cmon	WZ	64.9	0.0002
Hemiculter bleekeri Warpachowski	Hwar	WZ	53.6	0.0022
Saurogobio dabryi Bleeker	Sdab	WZ	47.5	0.0002
Culter alburnus Basilewsky	Calb	WZ	42.2	0.0038
Kenocypris argentea Günther	Xarg	ZG	95.3	0.0002
Parabramis pekinensis (Basilewsky)	Ppek	ZG	88.4	0.0004
Opsariichthys bidens Günther	Obid	ZG	87.3	0.0002
Siniperca chuatsi (Basilewsky)	Schu	ZG	69.5	0.0008
Aristichthys nobilis (Richardson)	Anob	ZG	63	0.0002
Culter dabryi Bleeker	Cdab	ZG	52.8	0.0088
Carassius auratus (Linnaeus)	Caur	ZG	48.8	0.0012
Ctenopharyngodon idellus (Cuvier et Valenciennes)	Cide	ZG	40.9	0.0074
Cyprinus (Cyprinus) carpio Linnaeus	Ccar	ZG	36	0.0042

from both lotic and lentic systems was observed by the indicator species analysis. *Rhinogobio cylindricus*, a migratory species typical of lotic systems, and *Siniperca kneri*, a species displayed a preference for a still water and with low swimming capacity, were recorded. The same phenomenon also occurred in other reservoirs^[3]. As pointed out by Oliveira, *et al.* (2003), ecotones play an important role in fish diversity and community structure in reservoirs, insofar as they

usually have specific features such as physical shelters, well developed riparian vegetation and spawning areas^[33]. In the lacustrine zones of reservoirs, Wanzhou and Zigui reach inhabited by fewer fish species, and supported mainly the piscivore *Culter mongolicus* and *Siniperca chuatsi* which migrates to the littoral to feed, and the planktivore *Hypophthalmichthys molitrix*, *Aristichthys nobilis*, which inhabits deep pelagic areas. Both of these species have adaptations

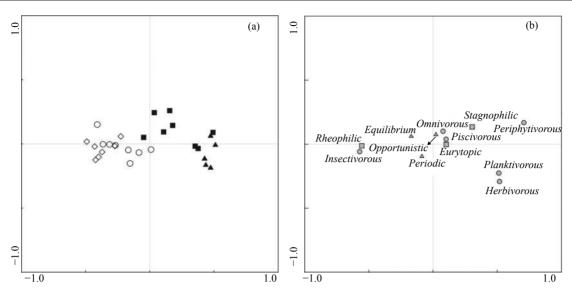


Fig. 4 Correspondence analysis of the 28 samplings and fish functional group based on the fish functional group data from 2005—2012 First and second axes had eigenvalues of 0.101 and 0.012 and explained 71.3% and 18.4% of the variation in community structure, respectively. Legend: Hejiang (\circ) , Mudong (\diamondsuit) , Wanzhou(\blacksquare), Zigui(\blacktriangle)

Tab. 3 Significant functional groups of fish assemblages based indicator species analysis (ISA) in the upper Yangtze River

Functional groups	Sites	Value (IV)	P value
Rheophilic	HJ	39.1	0.0002
Equilibrium	HJ	33.8	0.0002
Insectivorous	MD	40.1	0.0002
Piscivorous	WZ	30.2	0.0238
Omnivorous	WZ	28.7	0.0184
Opportunistic	WZ	27.6	0.0132
Herbivorous	ZG	49.1	0.0002
Planktivorous	ZG	41.2	0.0024
Stagnophilic	ZG	34.1	0.0056
Eurytopic	ZG	28.2	0.0372

for lentic environments, but longer lifespans. However, historical data showed that fish assemblages in both Wanzhou and Zigui reaches were dominanted by two typical lotic species, C. guichenoti and C. heterodon. The relative biomass of two Coreius species accounted for more than 70% of the gross catch of the Wanzhou reach in the 1970s^[34]. But now, these lotic species have almost disappeared in the lacustrine zones^[15]. Based on these results, it indicated that the new reservoir environment could no longer satisfy the ecological requirements of these lotic species which increases the probability of regional extinction of native species. On the other hand, the nonnative species, such as P. hyalocranius, I. punctatus, M. amblycephala, Tilapia sp., were abundant in lacustrine zones and some populations had been in the stage of outbreak^[35]. It showed that the regulation had longer-term negative effects on the assemblage composition in the TGR.

3.3 Management implications

Results confirmed our hypothesis that spatial pattern in the fish assemblage structure are affected by reservoir impoundment. The lacustrine and riverine zones are occupied differentially depending on the ecological needs of fish species. In view of the results from this study and some previous research, management actions should be targetedly implemented to achieve desired outcomes.

Firstly, because rheophilous indigenous species dominated assemblages in the riverine zones (e.g., Hejiang reach), maintaining the natural habitat conditions and fish assemblages in these areas will contribute to long-term persistence of native species, particularly for the endemic species inhabiting the upper Yangtze. Secondly, in lentic zones where natural habitat conditions have been highly altered by reservoir impoundment, conservation actions for native lotic fishes would be rarely practical. On the other hand, we should pay close attention to the related effects and other issues caused by the non-native species in the TGR. It is urgent to build the early warning and prevention systems of non-native species, to assess of intentional introduced activities rigorously, and intensive study the successful invasive reasons and mechanisms of non-native species.

Acknowledgement:

The authors thank Dan Sheng-Guo, Miao Zhi-Guo, Yang Shao-Rong, Wang Mei-Rong, Duan Zhong-Hua, Zhang Fu-Tie and other colleagues for their help with the collection of the survey data.

References:

- Thornton K W, Kimmel B L, Payne F E. Reservoir limnology: Ecological Perspectives [M]. New York: John Wiley & Sons. 1990, 1–13
- [2] Oliveira E F, Minte-Vera C V, Goulart E. Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border) [J]. Environmental Biology of Fishes, 2005, 72(3): 283—304
- [3] Terra B D, dos Santos A B I, Araujo F G. Fish assemblage in a dammed tropical river: an analysis along the longitudinal and temporal gradients from river to reservoir [J]. *Neotropi*cal Ichthyology, 2010, 8(3): 599—606
- [4] Vašek M, Prchalová M, Říha M, et al. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: Implications for ecological monitoring and management [J]. Ecological Indicators, 2016, 63: 219—230
- [5] Holmgren K, Appelberg M. Size structure of benthic freshwater fish communities in relation to environmental gradients [J]. *Journal of Fish Biology*, 2000, 57(5): 1312—1330
- [6] Hoagstrom C W. Habitat loss and subdivision are additive mechanisms of fish extinction in fragmented rivers [J]. Global Change Biology, 2014, 21(1): 4—5
- [7] Pelicice F M, Pompeu P S, Agostinho A A. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish [J]. Fish & Fisheries, 2015, 16: 697—715
- [8] Lima A C, Agostinho C S, Sayanda D, et al. The rise and fall of fish diversity in a neotropical river after impoundment [J]. Hydrobiologia, 2016, 763(1): 207—221
- [9] Liew J H, Tan H H, Yeo D C J. Dammed rivers: impoundments facilitate fish invasions [J]. Freshwater Biology, 2016, 61(9): 1421—1429
- [10] Agostinho A A, Gomes L C, Santos N C L, et al. Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management [J]. Fisheries Research, 2016, 173: 26—36
- [11] Greathouse E A, Pringle C M, McDowell W H, et al. Indirect upstream effects of dams: consequences of migratory consumer extirpation in Puerto Rico [J]. Ecological Applications, 2006, 16(1): 339—352
- [12] Guenther C B, Spacie A. Changes in fish assemblage structure upstream of impoundments within the upper Wabash River Basin, Indiana [J]. *Transactions of the American Fisheries Society*, 2006, 135(3): 570—583
- [13] Petts G E. Impounded Rivers[M]. John Wiley and Sons, Chichester. 1984, 326
- [14] Wu J, Huang J, Han X, et al. Three-Gorges Dam-experiment in habitat fragmentation [J]. Science, 2003, **300**(5623): 1239—1240
- [15] Gao X, Zeng Y, Wang J W, et al. Immediate impacts of the

- second impoundment on fish communities in the Three Gorges Reservoir [J]. *Environmental Biology of Fishes*, 2010, **87**(2): 163—173
- [16] Liu F, Wang J, Cao W. Long-term changes in fish assemblage following the impoundments of the Three Gorges Reservoir in Hejiang, a protected reach of the upper Yangtze River [J]. Knowledge and Management of Aquatic Ecosystems, 2012, 407: 6
- [17] Yang S R, Gao X, Li M Z, et al. Interannual variations of the fish assemblage in the transitional zone of the Three Gorges Reservoir: persistence and stability [J]. Environmental Biology of Fishes, 2012, 93(2): 295—304
- [18] Perera HACC, Rypel A L, Murphy B R, et al. Population characteristics of yellow catfish (*Peltobagrus fluvidraco*) along the longitudinal profile of Three Gorges Reservoir, China [J]. *Journal of Applied Ichthyology*, 2013, 29(5): 1061—1066
- [19] Zhu D, Chang J B. Annual variations of biotic integrity in the upper Yangtze River using an adapted index of biotic integrity (IBI) [J]. *Ecological Indicators*, 2008, **8**(5): 564—572
- [20] Ding R H. The Fishes of Sichuan [M]. Chengdu: Sichuan Publishing House of Science and Technology. 1994 (in Chinese)
- [21] Cao W X, Chang J B, Qiao Y, *et al.* Fish Resources of Early Life History Stages in Yangtze River [M]. Beijing: China Water Power Press. 2007 (in Chinese)
- [22] Froese R, Pauly D. FishBase [M]. World Wide Web Electronic Publication. Available at http://www.fishbase.org 2011
- [23] Quinn G P, Keough M J. Experimental Design and Data Analysis for Biologists [M]. Cambridge: Cambridge University Press. 2002
- [24] Dufrene M, Legendre P. Species assemblages and indicator species: The need for a flexible asymmetrical approach [J]. *Ecological Monographs*, 1997, **67**(3): 345—366
- [25] McCune B, Grace J B. Analysis of Ecological Communities [M]. MjM Software Design, Oregon, USA. 2002
- [26] Vannote R L, Minshall G W, Cummins K W, et al. The river continuum concept [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(1): 130—137
- [27] Agostinho A, Gomes L, Veríssimo S, et al. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment [J]. Reviews in Fish Biology and Fisheries, 2004, 14(1): 11—19
- [28] Marchetti M P, Lockwood J L, Light T. Effects of urbanization on California's fish diversity: differentiation, homogenization and the influence of spatial scale [J]. *Biological Con*servation, 2006, 14(1): 11—19
- [29] Han M, Fukushima M, Fukushima T. Species richness of exotic and endangered fishes in Japan's reservoirs [J]. *Envi*

- ronmental Biology of Fishes, 2008, 83(4): 409—416
- [30] Oliveira E F, Goulart E, Minte-Vera C V. Fish diversity along spatial gradients in the Itaipu Reservoir, Paraná, Brazil [J]. *Brazilian Journal of Biology*, 2004, **64**(3A): 447—458
- [31] Tonn W M. Climate Change and Fish Communities a Conceptual-Framework [J]. *Transactions of the American Fisheries Society*, 1990, **119**(2): 337—352
- [32] Liu L H, Wu G X, Wang Z L, et al. Reproduction ecology of Coreius heterodon (Bleeker) and Coreius guichenoti (Sauvage et dabry) in the mainstream of the Yangtze River after the construction of Gehouba Dam [J]. Acta Hydrobiologica Sinica, 1990, 14: 205—215 (in Chinese)
- [33] Oliveira E F, Goulart E, Minte-Vera C V. Patterns of dominance and rarity of fish assemblage along spatial gradients in the Itaipu reservoir, Paraná, Brazil [J]. Acta Scientiarum Biological Sciences, 2003, 25(1): 71—78
- [34] Wu Q, Duan X B, Xu S Y, *et al.* Studies on fishery resources in the Three Gorges Reservoir of the Yangtze River [J]. *Freshwater Fisheries*, 2007, **37**(2): 70—75 (in Chinese)
- [35] Gong W B, Wu L, Liu J S, et al. Variation in Reproductive Traits between Populations of Neosalanx taihuensis above and below the Three-Gorges Dam [J]. Journal of Freshwater Ecology, 2009, 24(4): 529—533

三峡水库蓄水后长江上游鱼类群聚沿河流-水库梯度的空间格局

林鹏程^{1,2} 刘 飞^{1,2} 黎明政^{1,2} 高 成^{1,2} 刘焕章^{1,2}

(1. 中国科学院水生生物研究所,武汉 430072; 2. 中国科学院水生生物多样性与保护重点实验室,武汉 430072)

摘要:研究对2005—2012年长江上游合江、木洞、万州和秭归江段的鱼类群聚结构进行了调查,以分析三峡水库蓄水后长江上游鱼类群聚沿河流-水库梯度的空间格局。结果显示,在三峡蓄水后,在合江至秭归江段累计采集到土著鱼类368706尾,合计132种,隶属于17科,其中鲤科鱼类为优势类群。沿河流-水库纵向梯度,土著鱼类物种数下降而外来鱼类物种数增加。对应分析表明,合江至秭归江段的鱼类群聚呈现出明显分化:库区以上河段鱼类组成以流水性鱼类为主,库区鱼类则以静水缓流型为主。指示物种分析进一步指出,河流区鱼类以犁头鳅(Lepturichthys fimbriata)、红唇薄鳅(Leptobotia rubrilabris)、圆口铜鱼(Coreius guichenoti)、圆筒吻鮈(Rhinogobio cylindricus)等22种鱼类为指示物种,其功能群特征表现为偏好流水生境、生活史为均衡主义及食性为昆虫食性;库区鱼类以宽口光唇鱼(Acrossocheilus monticolus)、宽鳍鱲(Zacco platypus)、鳊(Parabramis pekinensis)、鳙(Aristichthys nobilis)等16种鱼类为指示物种,其功能群特征表现为偏好静水生境、食性为草食性或浮游食性。以上研究表明,三峡水库蓄水导致的水环境变化是影响长江上游鱼类纵向格局的主要驱动力。建议相关管理部门根据不同河段鱼类群聚特征制定不同的渔业管理措施,如保护土著鱼类资源、控制外来入侵鱼类。

关键词: 鱼类群聚;河流-水库梯度;指示种;三峡水库