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=M TREC A R, BRI F¥(Carbonic anhyd-
rase, CA)FIRubiscoiif I 22 b, FRIT LA CO, ik
FEXT T = M8 ECCM I T 1E A .

1 #R5ERE

— A ta#Ebac-2 (Phaeodactylum tricornutum
Bohlin) it F H [ERF 2B il Ve S AT . 5 40 i 4 85
FRAEL 2N E W R SRIF/K A, iR N(20+1)C, WE
s OGHIE RS 0P 160150 pmol photos/(m2~s),
B R pH A Al I 7E7.80+0.05. 8.00+0.05 !
8.20+0.05, #H 24T CO, ¥ & 737 425 pmol/L (High
carbon dioxide concentration, HC). 16 umol/L (Me-
dium carbon dioxide concentration, MC)H111 pmol/L
(Low carbon dioxide concentration, LC). —ffi#fg
VI He P RS 46 % FE 500 cell/mL, 3883 ¥ n i A1
CO K LALERF R R P pH. 1597 £18—20f05
J110.45 pm SR Mt L 4L uEWsE T 5258
11 BKRERE LS

A 1oL i R VI R K IR (20+1)°C; ER T
30%o] 5B (Total alkalinity, TA)" >, J@ it
TA. pHFITRR IR B T S8 FR 0 BR R,
CO, I BE 388 1 B o - 5 37
12 EKNE

FH AL BR T B R S OB T R R A i AT 1
. LA K # (Specific growth rate, SGR)i# it LA
T AR u=(InXo-InX))/(T,-Ty), 1, X ALX, 73
SRR = A0 M F S T 0 T P 40 i 235 %

13 REERNE

K Clark 78 420 B8 B2 (Y ST 5300A, YSI, USA){E
400 pmol photons/(m”-s) I 658 T I 5 FE4H ML F) 1%
oA TR AR . FEIRAE A KT S A, A
LA e I 4R REAE (2020.1)°C, I 5 AR P = A
BT O AT M 35 B £996.0%10° cell/mL.

14 TAMERIENE

175 Sy i W G-250 4Rk 45 51 2 vl i P R
F1(Soluble protein, SP)&r & **. Wk FbE R 7E4°C,
12000 g {1451 T B8 0o 3min U B4 A . 7E YA
AN NS mL I Z& TR IK, SR 5 FH R 75 U 40 B A
AN P VAR 4 B, FFE 5000 r/min B 50 10min. HX
1 mL B3E, FEIANS mL2% 5 Wi 15 G-250 7 K,
FEEA AT 0L 43 6o BE TH(UV-1800, &y, H )il &
FAE595 nmAbHIWOGRE, P T AR E il 42 i H 5 SP
B AL B R b
15 MHERFEZENE

i3 5012000 % g, Smin) AR EEAH I, 3¢ b i

B, IS mL 90% I I B, 285 #E4°C HIRE PR 58 Hh i
B 12h. $REGETE20°C, 5000 r/minff &4 T &0
10minJa, BCEFEW, T 5507 L7366 i (UV-
1800, &L, HA) EIZE & K HIOLEE . AR
AR ARSI IChL a, e 8",

Chl. a (ng/mL)=11.47xAge4-0.40x g3

ChL. ¢ (ng/mL)=24.36xAg30-3.73% Ages

ﬁ EF', A630*DA664%%U4J€%%7£?&{%630$H 664 nm
TG .
1.6 TREEFTESSEMENE

CAVE T FH B 5 i By AT s ™ g
KE TACHEREI KBS, WA EGAZCOy Y
60min, HlELCO,MIANK . ¥4 i oA % B2 7 fE K
BRSBTS SR b iR B 4ERFAE4C . BLS mL
L (6.0%10° cell/mL)F B L V4 (20 mmol/L,
PHyps 8.3)E T S SAEH, 2R J5 A4 mL ] CO, Ll
K (4°C)IM EpH s 8.3 ZpH,y,e 7.3 BT 5 [ 1]
CAFEHd I PR A 5E : Units CA=10%(Ty/T-1),
Hor, To AT 53 3 7n AN A7 AL FIAF AL B ) 15 50 B
pHM8.3 % 273 1 7 If1 B[]
1.7 RubiscoiEMEMNE

Rubiscol Ml 7 2 i Helbling 25 it 72
B O W EEAN L, R BRSO 2 20
FEATJE K 40 B T4 °C IvA 7K 8 o FH e 7 i 3 4
T, SR JG TE12000%g, 4°C R &0 15min, B EiEWR . B
FH AR 10 22 0 (pH,,1,8.00) £2 75 50.00 mmol/L Tril-
HCI. 20.00 mmol/L MgCl,. 0.20 mmol/L EDTA (Ethy-
lenediaminetetraacetic acid, EDTA)#15.00 mmol/L
Glutathione. Rubiscoi M I & 1B G ¥ (pH,ys8.00)
HAL%0.20 mmol/Li% JE R4 T (Nicotinamide ade-
nine dinucleotide, NADH). 3.00 mmol/L ATP (Ade-
nosine triphosphate, ATP). 5.00 mmol/L & VLR
(Phosphatecreatine, CP). 25.00 mmol/L kB2 &4/
(Sodium Bicarbonate, NaHCO5). 22.00 unitsH§ & /L
P& ¥ i (Creatine phosphokinase, CPK). 18.00 units
3-TE R H i 5 FR B ¥ (3-Phosphoglyceric phospho-
kinase)F19.00 units H i 1% -3 -5 B2 It 20 (Glyceral-
dehyde-3-phosphate dehydrogenase, GAPDH). {4 i
FHFE BB I A\ R ubiscolll & MR AW, A5
FE ST 53 e e i (UV-1800, B, HA)TE
20°C Fll5ENADHTE340 nm RO . 5
21 ffu Rubiscoy 14 LAmAbs 340/mg protein-sK 7 o
1.8 BRI

N # A Excel flOrigin 8.51 3047 Hida kb L 5
43 M, F LR 3R 5 % 43 BT (One-way ANOVA)FIStu-
dent’s t-test73 AT AN [F] S B0 AD BE 18] (1) 2 S 1. BT
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AR P RERIRAEF — a5k FASFIRECO M 2
(B2 5 = R, PLP<0.05 hER B EHKE. BEE
~NFYIEE SD, n=3,

2 #HR
21 4%

i 1R, OGRS, ARIKCO MK T 5
TR =M ta i AR KR IR A AR BN E
F(P>0.05); /E = G5R T, HCAA M NI IR =
95 5 L A K R EEMCFILC A& 1 85 9% 19 4 )
BT 2.20% (P<0.05)£13.2% (P>0.05).
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Bl 1 AEDEERFICO, M XS = faR e ik b AR s 2 1 5 0
Fig. 1 Effect of light intensity and CO, concentration on specific
growth rate of Phaeodactylum tricornutum

22 BEAREERE

ARG T, AR ECO, R FRIN — M E e
O G R I 0 R 2 7 (P>0.05) (K 2). 1M
TE G N TR = MR TR LG R e G
CO MR FE ()38 0 2. 25 FH 5 (P<0.05), ZFEHC R 5 5%
() = A B R 1R 1O G R 7 Al R AEMCAHILC R
B FE11.37 (P>0.05)A11.78£5%(P<0.05) (K 2).
23 MHREIE=E

RO, ARIKECO, R FEHI = M
FEChL. aMIChL. ¢ & IF 63 7 7(P>0.05) (K 3).
TER G T, LCTR R FRMChL af & 7 5l & MCA!
HC FE57£11.38 (P>0.05)F12.17{%(P<0.05); LC R
L FRIIChL &7 hl 2 EMCHIHC FE 95 191.20
(P>0.05)#12.241(P<0.05) (& 3).
24 FIAMEASE

RO, ARIKECO, R FEH = M
AT E AR EIFL R E ZE 5 (P>0.05) (K 4).
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Fig. 2 Effect of light intensity and CO, concentration on net
photosynthetic rate of Phaeodactylum tricornutum

ME R E5E N, MCATHC R R E A S =
FEAELC T REF= 1053 0 R % 120.0% (P<0.05)F128.8%
(P<0.05) (K 4),
2.5 FREGETEGIEE

W SHrR, TR 7E R LIREK IR, =M
T 75 14 1 AN R T il (e C A ) PE I BE CO LI FE TH i
TR . ARG TR N, MCAITHC T 85 5% 1Y 480 i 3
eCATEMES B2 LC N 97 1159.09% (P<0.05)F1
22.73% (P<0.05). fEmGIE T, MCHIHC F 557711
eCAVE M MR LC TR FR 1962.71% (P<0.05) A
39.98% (P<0.05) (K 5).
2.6 Rubisco’E

wmE 6w, FEMRIE5E T, Rubiscoifi ERECO,
R SE hn F vm, FIME 2009052 0.91H11.27%
10~ mAbs/ug(SP)-s, HHI EHC T H; 3 (f Rubiscoi
P4 AR LCHIMC T 35 7% 192.42 (P<0.05)F11.391%
(P<0.05). Ef=t5% N Rubiscod PEBECO, MR & 1
T Fh v, HAME 4 B 90.89. 1.74F16.0x10° mAbs/
pg(SP)-s, HHHC T 55 7% i Rubisco i £ 43 il &
LCFIMC F 15 37:1116.72 (P<0.05)113.451%(P<0.05).
3 iTig
3.1 EKEXEER

FERICO A FE 2 B B PR R -, 0T 328 1)
He A E AR BRI 5 AR,
e VR FEE 1) C O A1 5 1) 389 Ief A ) 40 3 e 1 2
RO R e g R W, TR R, COMKE
AR = A TR G R A A K E R
S, AR B GE , COLMREE 3G InREME 4 mid ot
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B3 ANEDERRAICOM N = fi MR BEChL. a (a) MChL. ¢ (b) & BHIFI
Fig. 3 Effect of light intensity and CO, concentration on the contents of Chl. a (a) and Chl. ¢ (b) of Phaeodactylum tricornutum
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4 ARDEHRACOLIR LN = FABTREE T I 18 F S BRI
Fig. 4 Effect of light intensity and CO, concentration on soluble
protein content of Phaeodactylum tricornutum

AR = A TR RN ALK COREF R
WE A kA M A K, AT S A IR AE SR BECO, B
/b 7 T ¥ IHCO; [ RE & i H 11X 38 7 e &
TR A KA X, IR 4 T, B A3
Herer & kb, X} IEHLER (Inorganic carbon, Ci)
JH&E 332 BRI, (015 S i P e 2 1 P )
PIFRAS, HISS T COL MK FE T @it 15 &l Z AR
Ksgm . Pk, O, COKE AT =
IR E B AEKIFL B ER M. AL
I EATER FECO, 264 T, 2 2 B e 0% 3R HCSE 7
JERREFIIRUR, AR T i b A E . b,
TRALZ&AE T BRI CCMPT A Jk/D T RE & TH #E,
FERIX B4 BB TR M 2 T,
SinutokZE " I 9t 45 B BR, 7E 638250 umol/

11 pmol/L-LC
E 16 pmol/L-MC

c £Y 25 pmol/L-HC
020
E
=5
Hm
@7, 0.15
(]
%:
N ~—
= b
%E 0.10 =
Qg; % c
Q =
© 005 | = a b
- a
0 =
50 160

S5 Irradiance [umol/(m?-s)]

Kl 5 AFDEERACOMEE XS = M1 TR e CATE L HI52 M7
Fig. 5 Effect of light intensity and CO, concentration on eCA
activity of Phaeodactylum tricornutum
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SRR A EORIR EOCA SR AR ), NCCMINIZ AT 1
5 A AL AR AR R T, AN M >
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NCCMsTE A HISS, 90D T Re & 1THFE, 1152
b 3 T gk 2> - B B R e i BE RO e i DA
BRI H Y, G R RISPR A R TEE K
EIIN, FEOET, ATPIA B>, T 20540 f T
N [FIALfE 7 52 31 R i) I 52 0 - 2% 2 FISP I & R,
M 11 55 C O, & 2 of I £ 22 RIS P& B Ay S )
MAEFGR T, COLK LM T 5 80 =M 18 45 %
SPHI & &b, X2 THERLFZMT, EZ2H
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Tr 11 pmol/L-LC a
E 16 pmol/L-MC T
2% 6| X125 pmol/L-HC 1
2 5t
3
2
o
& 4
R 7
e
X
Nz 37
b E
-~ Q
rS o2 b
g 3 . ==
E 5 —
XE 1 LN d4=
cH =
0 = = ,
50 160

JE5% Trradiance [pmol/(m?-s)]

6 ANRDGHEANCOL MR LN = A1 445 BERubiscoli P i) 1
Fig. 6 Effect of light intensity and CO, concentration on Rubisco
activity of Phaeodactylum tricornutum

N FH 988 20 it 2E K 3ok R AR i AR U RN &5 4 )
/“3[39,40]0
3.2 EEEM

CAFIIRubisco & fef: 18 CCMs A1 [ Bk f1t) B8 22 4H pt
4y, CAIEIL L CO, FIHCOS A H AL AT 3
I LR 5 40 M P R C O, K, T Rubisco A& fiE 1k
COLBE N A1 Bl 1 BRI, 1 3 ) T T8 190 ' 6 [ ik
MAEEEWNEEWN I, A% RRILE
B AROEHE R, CATE M ME FE 2 Civk B 1 T vy i
FEAI, X 5 Martin5 ™" B 7T 45 B A — B
COL MR BE BT {5 i sk 5 Pl ik N S 200 P P 358
[FICO, & 3N, M55 1 B4 TeCARIIKH, S
HeCATETEREAR . %50t Rubiscolif I /& A (L
fEF Y, xR i T 7 T, % R AR 9% 1 AR u-
biscoffI ik &, Y —J7 T, JeTR A INA F T4
% 78 JE IATP F FRubisco % 46 ™, M2 &
Rubiscoif 1. WuZ 'yt 5t 45 5 52 /X Rubiscold
PERE S COL I P 1 T i 1 384 588, 1 5 AT I 45 1 A
M. EREAMT, BEACCMs N, 154
1 B8 & 5212 T Rubiscol) & 1k, $2 B Rubisco 7%
VT AL 3 C O, B R P A v 0
CO,/O,fH F{E #ERubisco R LA, F5e 24 75 41
M & B m Bt e RCOMKE T, k
IR SCAE PR FH % Bl (40, 35 Rubisco) i P 1 PR AR 4 S 3
AP R IR AR Bk =, B 245200 R 4T A 1 3
KB = AR R O A E B SRR T, R R
BT ECCMIRER, COLMKR E HI3E It F T
/D CCMIT RE R TH AE, $2 Bt & [ SR . R,

FE NG 5 AR iR COL K B REWS L AL Rk B CCMIE AT
AR R RE R T, HEMR M A & BB AR .
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LIGHT-MODULATED PHYSIOLOGICAL RESPONSE TO OCEAN
ACIDIFICATION IN PHAEODACTYLUM TRICORNUTUM

ZENG Xiao-Peng, XU Jin-Tao, DENG Zi-Quan, FANG Yi-Lin, HE Ming-Hua and XIA Jian-Rong
(School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China)

Abstract: There is increasing evidence that different light intensities or ocean acidification (OA) induced by elevated
atmospheric CO, concentration can affect the photosynthetic capacity of marine diatom to different degrees, respecti-
vely however, little attention had been paid to their interaction on diatom. In this study, the growth rate, net photosyn-
thetic rate (P,), biochemical composition, extracellular carbonic anhydrase (eCA) activity, and Ribulose-1,5-bisphos-
phate carboxylase/oxygenase (RubiscO) activity were investigated when Phaeodactylum tricornutum was grown under
different light intensities and CO, concentrations. The results showed that the specific growth rates and P, in P. tricor-
nutum were not significantly affected by CO, concentration under low light intensity (LL), whereas in presence of the
high light intensity (HL), elevated CO, concentration was beneficial to promote the increase of the rate of P,. The eCA
activity, chlorophyll content, and soluble protein content decreased with increase of CO, concentration, regardless of
the high or low light. Under LL, RubiscO activity of HC-grown algae was 2.42 and 1.39 times higher than that of LC-
or Medium-CO, (MC)-grown ones. However, RubiscO activity of HC-grown algae was 6.72 and 3.45 times greater
than that of LC- or MC-grown ones under high light. These results indicate that the algae can adapt to changes of light
intensity and CO, concentrations in the environment by adjusting the allocation of energy during the operation of the
CO,-concentrating mechanism and photosynthesis.

Key words: Light intensity; Ocean acidification; Phaeodactylum tricornutum; Carbonic anhydrase; Ribulose-1,5-
bisphosphate carboxylase/oxygenase



