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Vel (Tegillarca granosa Linnaeus), 145 fil.
i, J&PARE 11 (Mollusca), JiHELN (Lamellibran-
chia), %114 H (Taxodonta), 4l £} (Arcidae), | 72 434
T B R PR ORI e ik, A R B ) 2
Feu A —T S R A B R T
12 B A0 M5 43 LEE v AS B BT A AR, A 5 DA
et A FE T %, AR IPCCRT M 1921004 Al
23004 M BRAAS 3¢, 70 AT 7 ARSRIB IR AL 2% 1
(pH7.8F17.4) %5 e i A% 13 3N 1) 521, FF3i 1 %) B
AN [EHEVERR AL 25 2F T VR IHKS F ATP A il o0 Bt il
JeCa’ -ATPaseMiHE SIS 16 %, ¥R T HBmiks 1iz
BNAERILE

1 #RERE

1.1 RIEMRESEF

SEZ5G i F () P I [ 52K (35.644.33) mm]
T2014426 H B H WL A TN RIGE (RE121°,
J6£628°), B J5 1 54 78 2 WiV L 48 iR K= FR I 7T
FrGETLIRE ) . WK/ O LR
J&, VR mH T2 2000 LAAT H It K8 75— JE [EK
pHN8.07+0.07, K HN(21.24£0.1)%o0, i E N
(26+3)Cl. fEF TR, N KAREES T
S, B H B E N R WS AR i B (Platymonas sub-
cordiformis, BEN2x10*N/mL) =Wk, LARIE Rl
Ab 38 P IR S
1.2 EERUENSSEINE

SEI6 B E = AN pHHE K AR ZH, e rp ot HE 2 A
IEH /K (pHS. 1), HHRHEIPCCHI M % B 7 AN i
PR S8 2H (pH A 0 7.8 F17.4) o X REAH 78
N BRI 128, R /K & 0 & CO, 1 77
Aol &5, 78 SuG AR e, /K (¥ pHIf i Sartorius
PB-108pH vt W il I8 FE A 5 B2 A8 FHWTW Multi
34108 2 ZHOUK B BT A4S o [R) B S50 3 18] &
2N B P FRLASE 95 S YR S — U SRV K ) A
B, R S2ae ARG K pH . ERRE . SRR AN
TR, 6o B &, AR COo2S Y ST
AT H SEI0 FE R K I BR IR Eh Ak R o A ST
(Qu) 5T R R (Q., ) B8 B4R K I3
WBHINE 1R,

1.3 CRIHEFRRESER LR

FR A 2 R HRIE R 7= 5 vk, el kg d i B
R R A P 7 S AT — B, KRN
— IRV B A IR 7, PR S B T23°CHY)
T T IR R HE AR A R R E T
HA500 mLid JEIG K SR HRgEAT (1 72, 31 TR e AR
R EFRFEE 7R . ARV IH IR 4 HE D 1 5 15 1k 78
R, R ZI45min 5 WA T B, 76 BB (Nikon,
Eclipse E600) ™A 2K 1 51 &, I H LBk 2ol
BT .. BOR R 2 00 E = IR CAYR
DHRER 2, RS SR AR I, SET6 P &
T R AR B AR PR R

SR G YRR ZE R R 2, SRR B
] — AN SHAMA RS T4 35 53R =0, AR5 43 5l
Jit AN R BRI AR B . BRACALEE 1h S, USRS 1
BES T 5 S0 Ee o b
14 BTFEEESH

AH R SIS AL FE Th 5, BL100 pLis T B E T 5%
M b, HaE B DLk 2% BE R R (Wall-
effect) X St 48 A, B G RE B TR A 3
1% 2 45 (DXM1200F, Nikon)f] 2 ¥ 45% (Eclipse E600,
Nikon) T BA200x 50K £ Bdt 47 WL 52 H 0K 112 3
& LT AR (E30s). i FIFIR #2F Image (i
A 1.46r) B THE N LA B T4 HT(Computer Aided
Sperm Analysis, CASA)¥if, XJ A& 4 347 4>
W7o BIE W 52 K 1 LEAS RS [8) 5 A B AL A, A4 7
BENE, SRS RS AU e st i 2k 3h
HIEVer)s RIS (Vpp) W B2 (V) 7
AT ST FEAG I T oK E 154N YR M AN (RS R i AE
AR b FE S I IE B I DL L TS S TR A -
1.5 RIHEFATPESENE

SR WG, A HE90 mLIE T 1
mE T EOEY, TEOPL(5810R, Eppendorf)H LA
3000 r/min & 0> 2min, 3+ _LiEREHE T HTATPE
B E . 56K F Bradford & AW I 5 R 7 &
(P0006, 22 K), T FEAR T S HE AL 10 7 155 Ve i A
TERERAKREITER. MEMEHATPE EIN 2R
FEE(A095-1, M RUEE AR, FIH 2 A EHUV-
2100, b7 40 EAE i 7E636 nmi K 400.5 cmDt

R 1 WA SHRUIIEREKECSREIESRER)

Tab. 1 Chemical parameters of seawater in the control and experiment groups (Mean+SE)

pH T (C) #7Sal (%)  pHyss ﬂjﬁfgﬁ O EPCo: & %(Tn?ﬁﬁgl) e IE;STWE Wﬁf*”fg
8.1 26.28+0.05 21.19+0.08 8.07+£0.07 2057.63+11.25 596.37+£3.25 1954.68+6.87 2.04+0.02 3.26+0.03
7.8 26.19+0.10 21.22+0.09 7.79+0.10 2062.97+11.28 1175.25+20.52 2004.80+8.41 1.16+0.02 1.85+0.02
7.4 2622+0.11 21.18+0.12 7.41+£0.05 2067.78+11.58 3095.58+43.7 2135.43+7.76 0.48+0.01 0.77+£0.01
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ATP FE{H (umol/g prot).

e WITEOD(E — A1 ODIE
AP = e oD _ ZHOD(E
FRIEMIRE x MREEE - EARE

1.6 15 A EEBR % B (P K) 70 8% B2 SR 08 0 B

(PFK)E5E N E
AHIE FEAE FH PR TR PR 8 T 2 X 7R S (A0 76-1,

B 5 A ) X AN ] Ab B 2H Y8 RS T 5 VS T TR R

(PK)¥E 21304700 5 o AR5 3570 5 1) B 4 SR A

FFREI G, 1£340 nmiE K:0.5 cm AR AL 58 BF 5 AE

30sHS HIE M G AE (4,) . Bl JE NN LR, 37 C /K%

15min, M52 [ B 5 BE A FIROEAE (4,) . FEHRCLR A

R+ HEPKEFE /7.

= A Sl i _ A 1= A 2 .
WA ) = 2 522)
RRII] + HEsbE x DR L e

B &

¥37°C TR AL E AR EE 1 pmol I
1 I P =X A B PR (P P ) 7 738 s T BT PR 58 S — A il
15 J1HAL(Upg) o

552 FA8L, T F s 1 R A i X S (A 129, T
R RO KT R B R S S (PFK) ¥ 1 34T U
T o i B U B PR Z R IR T 1 mL
Eb oL LS, A0SR A 7E 340 nmik K R 20s 446
W YGAR (A ) A 10min 20sH IR 61 (4,) . B i 218
PLR AT HPFKEF G /) -
FAEREIRIMEEIE /1 = 450 x (41— 4,) ~ BEAKE

1.7 R FCa’ -ATPaseB§ENIE

AW A AR ek Ca” - ATPaselig il 22 ik 77 £x
(A070-4, B 5 ) of A ) b 3 5 1) U8 S F-Ca” -
ATPaseifi PEBEAT I E o 1% B8 70 & ATk (#8125
B, MFESE R R, R 20 606 FE v e o B R
7£636 nm K A4b0.5 cm R BAE, JFiid BL R
AR F]Ca” -ATPaseliFiFH .

MEODIE — X FROD/H y
FEODIE — = HODIE
FRUETRIRE x 6 x 2.8 — EHWE

VB /NI 2 T A A B 1 O 40 B e AT P 4y
fEATPF 4 1 pmol LWL I & 8 SN — M ATPRGE
J1RAL, B umolfi#/ g (prot h,) Utpases
1.8 BIEGITSHh

F| F Levene & 56 F1Shapiro- Wilk A% 56 5K 43~ J1)

ATPaself /1 =

Wr B H 2 A A 7 ZE S RESYE A, AR A
B 33 AT P 5 iR S QE 5% A8 4 LU e A R G it oy
Mreisk . @it R R T7 % 73 #1(One-way ANOVA)
T e ittRs iz sh g . ATP & &PK. PFK
R1Ca™ -ATPaselii /175 2 SL I LI (1) 22 57 . I3
i Tukey#6 46:(Post-hoc Tukey tests)iE 1T % & L X,
WA R 2 R . FrA St e R S 1T
M B AF(R development Core Team, 2012)H 4T,
PAP<0.051F Jy B 35 PEAT B b vfE

2 #£R

21 EIEFERLIT RIS FEahEE AR

Ext BRALL, PR I AL FE S B IS T8 )
T I 3 PRAR(P<0.05), HLiZ 2B %5 R AL RS FE 1)
PR R E R . A pHT SRt K A FE S,
JEMH RS FIIVCL. VAPHIVSL 2 A1) % 22 %t HE 20 (1)
82.5%-. 62.8%F176.2%. % #E/KpHKIHE—F T
F(pH7.4), TRl ks T Veor Vaphl Ve 23 it — 5 %
AN HRAL166.9% 53.3%F154.7%(F 2).
2.2 EIEFBRUITRIEE FATPEERRM

BT E 0 RER, BRI S ESei
K FATP & &2 53 N (P<0.05), 1 1R, &
FERRACEE LG, Ytk TATP & & /EpHT7.8 A
7440 R A 43 ) R R A IR ZH 1 62.9% F135.6%,
Ut B RS - S REAE M PERR AL B 2R A i a2
2.3 EIFERCXTBEER R AR MBS (PFK) A F BRER 2
EE(PK)BRE RS20

Guit 2 R, WL AL T S ) T VR RE T
PFKHMIPK 1 B3 71(P<0.05). ANOVA 5 Tukeyks
55 2 7~ pH 7.8 1 7. 4B Ak S 56 4H 1) e wH K 1 PFKIE /)
KT R, 4300 A A X R ZH 1 76.9%A145.8%
(K 2). 52280, EZpH7.8F17 41 /K BRAL AL B
Lh/a, YeuhAs + B PK B IE 7741 53 5l AH 0T %) B 20
B T T 33.1%H150.0%(1 3).

R 2 OEFRAIIRMHE TS HEE N EATER)

Tab. 2 Effects of ocean acidification on the sperm motility of 7.

granosa (Mean£SE)
pH Ver (um/s) Vap (Lm/s) Vs, (nm/s)
8.1 123.63+2.06°  136.30+3.23"  105.65+5.39"
78 101.95£7.97°  85.66£3.20°  80.5142.19"
7.4 82.73£3.87°  72.64+320°  57.75+431°

W Vo NHIZRIZENIRE, Vyp N PRIMATRERE, Vo NE R
HRE; [F—ATh, A F_EFR e BERR 22 R R 2 (P<0.05)

Note: Vo means velocity curvilinear, V,p means velocity
average path, Vg means velocity straight line; Values with
different superscripts letters in the same column mean significant
differences (P<0.05)
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Fig. 1 Effects of ocean acidification on the ATP content in 7.
granosa sperm (Mean+SE)
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Fig. 2 Effects of ocean acidification on the on the activities of 6-
phosphofructokinase (PFK) in 7. granosa sperm (Mean+SE)
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Fig. 3 Effects of ocean acidification on the activities of pyruvate
kinase (PK) in 7. granosa sperm (Mean+SE)

24 SEHBRICIRIHIE T Ca'-ATPEESE ARG
FALDR R T 22 0 R, AR R A AL T I 2

T RIS FCa’ -ATPasel® 11(P<0.05). HIR X}
HEAH LG, YRR T-Ca” -ATPasei® 717 £ pH7.8 (11
1R K A 3 O R R A 3 AR R (P>0.05), 12
pH7. 41 K BR Ak kb B 5 G BOJR MRS T Ca’ - AT-
Paseii 71122 FF% 1 60.2%(P<0.05, I 4).
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Fig. 4 Effects of ocean acidification on the activities of Ca”™'-
ATPase in T. granosa sperm (Mean+SE)

3 iR

o8 A& FE N AL ANV B e B HES Y R, A
T8 Bk P A 2 i B M 1 AR B R I — AN E 2
B AR TR I, AR PR AL St B S
SSVRHHRE T IIZ AN (BFE Ve s Vel MV ap)o R
I SZHE BN A, e MRS 32 3 18 2 1) AR A1 R ok
HH 58U AE = 4EKAR N B 9P 1 AHE L2 1R R,
X TSR 2 SRR MR R R
25 AL KPP YA (Crassostrea gigas) S5 H(He-
liocidaris erythrogramma)F$5 & JE&E F M i (Acro-
pora digitifera)y SRt B RIED Y (HIGER
S MR i VE TG A ME SN YIRS iz Bhae ) A AL
—HEAER. WRIEATTIRRME R, BER
A 5 M e BEORS 32 B g 0 1 R AT BLA BL R LA
J7 AT W R

T 5, MR AL TT R 18 B AS e i A 1 R O
K FHIZBNRE ). ARG, DISRIHE
FIERE SR K N — e TH IR, RA SR
FI3E B AR AR RS th A s = B, KRR
BRERFE . I AN pH AR BRAK 25 AF AR A0 A 1T e Bk
B T80E L ORZ s Rg S gs s . B B E
Si2, e RS 7 B0 R 52 21 A1 S K pHIR) 8 715 A
SO o B, IR KR pH 8 T B 27,51, e
BRSO 2. SIS B IR R AT R 3B B N TR]
SRR, ST M, WEERR TR S TR
RS - 1 1E SO, AT S B IS B RE T R

FR, W R AR S RS T L BE R 4, PHASHS
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(Mitochondrial membrane potential, MMP)7E 1 R
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G2 e i ) SR IR S A AT
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OCEAN ACIDIFICATION INHIBITS THE SPERM MOTILITY OF
TEGILLARCA GRANOSA VIA DISUTRBING ATP SYNTHESIS
AND INTRACELLULAR CA” ACTIVITY

SHI Wei', HAN Yu', YAN Mao-Cang’, HUANG Xian-Ke’, HU Li-Hua’, CHAI Xue-Liang” and LIU Guang-Xu'

(1. College of Animal Science, Zhejiang University, Hangzhou 310058, China; 2. Mariculture Research Institute of Zhejiang
Province, Wenzhou 325005, China)

Abstract: Since the industrial revolution, massive amount of anthropogenic carbon dioxide (CO,) have been generated
to elevate the atmospheric CO, concentration. Some anthropogenic CO, have been absorbed by the ocean to cause
“ocean acidification” (OA). Although the negative impacts of OA on sperm motility are increasingly found in various
marine invertebrate species, the cellular and molecular mechanisms for these effects are still poorly understood. This
study investigated the effect of OA (pH7.8 and 7.4) on sperm motility and energy supplying pathway in blood clam
Tegillarca granosa. The results showed that the sperm swimming speed reduced significantly in acidified seawater.
Since the adenosine triphosphate (ATP) level of sperm is closely related to its motility, we analyzed the sperm ATP
content and activities of key enzymes during ATP synthesis under different OA scenarios. OA treatments significantly
reduced ATP content as well as activities of 6-phosphofructokinase and pyruvate kinase in the sperm of 7. granosa.
The sperm Ca’'-ATPase of various animals has been reported to regulate sperm motility. Therefore, we explored the
Ca’-ATPase activity of 7. granosa sperm under OA treatment. The results found that Ca’"-ATPase activities in the
sperm of T. granosa were significantly declined under OA scenarios. In conclusion, these results suggested that OA
could constrain sperm motility through inhibiting ATP synthesis and disturbing intracellular Ca”’ regulation.

Key words: Ocean acidification; Tegillarca granosa; Sperm motility; ATP; Ca”’



