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sule). Ji 44 (Sheath)F1%4 % 2 (Slime layer), H: i %6
T 25 5 I T 5 96 R e s ) 5 400 i % A O
VF 22 o V5 0 T 1 B A7 R A S5 [ T i A L 3
RN 22 A 201 i 5 4 ik 141, B0 I 3 6 5 3 FRE 44K (Colo-
nial cells, BRFR R K, aggregates), A LLH 23K PT
JER A S AT A e B R B, th T
I AR AR G Ptk . TR R, A
T R TR B Ak DR JU) B (1 0T ol S T A A 1 T
ORI AR B8 R0 i i R 0 R Ay T
TR AP JZ M LAV LB 40 B . 35 TR f i fa 2
FIRE A I8 3 F B A B O F Box 2 ol f 0
7 A () 200 TR 52 B R 1 R 4, K A T T R R K
FF R AR AR AR R e . TR R, (RO
Hh BRI D0 2 0 e B 2 A A 4 A i
VR, BURAOK L, BUR A M E KA. BEE
(IR R 38 DR R 265 1) o 45 4 o 2 ol T 3R A3
BEAR 3588 1 W K M 9T e e R S i a2 — 1Y
T R % 42 1) W T A 22 TR ) O R A AT
TR IO T 1, AT AT BB AT 2804 ) il R i K AR 1) R
AR R .

A T R A 22 R 1 B A T S TR A R ) O
PR 25, A R B A PR TR FR AT 4 5 2 W B /K o AR PR R
PEo W R HE YRGS R S AT L S AR A R A
1T RIS IRN, 2 H BN IR 3RAT D0 4 3 M 4h 2
WA T R R ERIR K A SR D
BTl Ak A= P RV B B T S T T O A . 3K
It A 22 3 (K- ) B AR 0 B 15 g 22 B (LPS) Y
O-PiJi (H1 22 A S0 51 53 B A7 4 B 22 W B, A2 Al T
TR AR T P B0 SR R 7% ) B B AT AR AL Ak o
T B PO AL TR SR B PR R A ke, B
(I FH R 2 2 o 6 O B (PN ) N J 2 [, 7
R TEAE F N T B 22 BB 27 3ok 41 B 41 43 ik 3
b o oF W VB P AN 22 W 1D M 2L R R 5 A T
HED . IKETE B (Microcystis flos-aquae)C3-
4Ok 1785 002 22 B 11 P 2 A oy LB (R 5 L
1.5%) W& HE(2.0%). K¥E(3.0%). H & HE
(5.0%)~ BZEHE(5.5%)FIF L MRS R (83%)! 1. B
£ 8 A T 5 P A 22 W I S B LA R R 2
B A AR S e T A RO 2
(KIS 22 B — 3 03 T oK v, BIVBTIE VA A 22
T G A R EE AN M R T, RIS A 2 R, ST
S BEREAR T O L R Y R A
R, HE A A AN B
ik R A AR 3 P A 22 T R M R AR, 3 T A
20 M FROREART T A R A 22 SR A B A A )
KT, F5 2 M Ah B 195, 7 36 V8 1 52 (Muci-

lage) MU 3 B A4 i b A v g BAT SR, T A
ILAEIBE N R o

2 PEP-CTERMZEHBRMIENFER NI IE

bR T RSN 20, TSR M AN R T IS AR AE
AU HAR AR+ i, LA RS = K
R B A 22 R K IEYE . 5 40 B BURHE (1)
JR 52 BRI, A 2 B i X A
201 2890 AX R & I AE B == IR BH M B (e 4 A 4k
By R, B A 43 1% B (Sortase) Il K 41 Cig LPX TG
J 10 2 THI A 11 RN T 20 ek A7) B i e 3 4 g R )
Fk B w11 e g O B A 1 2 R AL 1 AR
B R R TR B 2 P P 0 o (B 4 A ) e 4 1)
HH AL 1) 4 32 Il () 90 S TR, 3 A 4 3gk Il 3k R (LA T
PR Z N eps H)ANHEN ) 26 T 25 1 3 R85 i 4h 2
WG s s DAL A AH HL G R, T 26l ) 5 T 2 1 PPl o
BA Coi FIPEPE 7, 1 HUE &l 5 A& 1) 22
SRR AN I3 R (O-linked) F1 R 4 % (N -linked ) 7% 22,
PR IXFRER H 433%E R i FR NPEP-CTERM/Exosortase
(Exo 8 4b 2 ¥ % 4" . Exosortase (EpsH)
J\IR G BB 1, AT RE 5 8 =2 TRBH M (1) 43 e B AH
LB AT #5 Ak AFh A . PEP-CTERMZE [Al () R 3A 7] B
52 B4 I RpoN(BY AR Sigma 54) 4K i 1 — 47 &R
GiPrsK/PrsRIFJATT o AN, W 5T A 300 35 6 TR 358 241 1
HRCBEN-I9E I L IR A R (B L e AL Il ) S R 2
L PEP-CTERM/Exosortase733% 5 4t 4 K& B, K1t
KA NI S BE TR A T e S 2 R I Prs K )V
WAE S, XK B PR WEx0AT,

PATVAE 15 11 75 Ve 3 22 0 = 0 T 30 IR B (Zoo-
gloea resiniphila) MMBHR H 15 Dy K S e JoE 14l AR
KRR, T 1% 2 A5 B R Y Ok G RAS bR, %
E H — L 5 o) 2 HE R YA RS A 2 B R
JSAE S FE R, AL FE— N 2140 T B 2 (KB) 1 R T 3 [A]
15, FF 12 ik DR 7 mhom 5 2 e il ik (R A R B A7 AE
FhIRIFO AR P 22 5 0 30 0 L R P AN 2 B KX A4 Tt i
H B ) 55 2% [R5 26 IR E B R A T BOd A2 B A
HE )R, 127 PR R AR 8RR ST e % BH W Bl
BE R IR AR E B A — A 74
ERAB . 25 W IKEIE 5 B %, Hd3~ 2k
KSR LR i 3 [KlepsB2 . RS AR K prsTAI S 5
A BUH 52 05 10 PR B B R -N- £ 18- D- 2 B %) B
Jie 1t S T 25 Rl g ) i N 2 3 B o i s AR AR
B2 B, UL H 25 2 08 i B A R
B A 2 A A AR S W R R 2
7 2 4t (Two-component system) {857 25 21 2 FR L
fi§(Sensor histidine kinase)Z& [K prs KB 5 Wi 5.1 75
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 H(Response regulator)%:KlprsR i, M4 Z HEI &
A SRAFAE, FI6 IR R B I A1 22 Wil e 4 W 0I5 i
FFGFRIE T, AN BEf 2 20 R A0 A R R IR . 3R
A3 — 2 AR 5T R B — L PEP-CTERM &K [ Jii ik (4]
Z: 5 5 W 2h I B T RS B R, 2 A4S JE
pepAMpep E¥e 55 7K1, I H 52 F|RpoN. PrsK A
PrsRIFIE 1. 7EproK el # prsREE I i 5 48 bk
o B R iE pep AL R W] LUK S 1R I AT iR Y, i
A0 22 W AR AS P I i 3] 85 5% 5 v T o 2 B A4 e 4]
Fo Pep AT F i )2 A (R i H A ML AL 43 WS
SR, TSI I TR Ay s AR 4 B A ), LR
() i ik B AR A 170 81T SR TR e B IR, W)L s AL
TPEPHE T T i, Hodk— 5 3 e MBS A 0 A5 45 32—
ﬁﬁﬂ?“ﬁ[zl 24] .

WG, FRATILE 55— PR B A (28 141) 2 ol 1 i A
T BE/K JE # (Aquincola tertiaricarbonis)RN124k H71,
KE 17 ZURVITE LR 2 (1) RAZ KR, %58 B — AN
ABL ) PR A1 22 % G ke R DAL A DA B — 18 H At R AT
rpoN1 sigmalkl T-(c™)JE K], FIl FH 4% B AN Wil <2
RpoN1:& B % B Y s i) £ Z sk 2 — . Al
()2, 125 R N RAS PR b BT ) K B b 22
G o WA i B 15 7 B v, AN R 2 40 B 4 L A
TE R B A o 73 B IR poN 1 FF AN 5 1l Jifd 41 22 i
B A DR IR 3%, Ut B RpoN 1A 8 428 1) 228 [ 75 3Rk
Ji 1] B S i A T PEP-CTERM R [ /i [ 3R 3 A1 43
TR M A 2 B 5 8 Hh &5 & 70 4 R BE AR I 3R
T CATE BB R A1, T AN A& B4 R 4% i A 2 B &
. RNI2EEA rpoN1 rpoN2. rpoN3FrpoN4%%
4455 R RIPREE A, (5 R A RpoN1BE 4% 1 i 4] 1)
JE A%, FF HRpoN 15 1% 1 Pk 1) B 5 12 3l (Swarm-
ing motility) FI2E A4 B i Biofilm formation)™,
T HG 4NrpoNZE [, rpoNT R R F 1% 1 %
NI H rpo N RAEMEIAE A K 248, 1) 1L-F-A I
AFMs 2 HE . T 18, % 5 R A Bt
A9 i PEP-CTERM & 15 (R 3E [H] o X L8 45 R B
B I T A1 7K JE TR S Beta B T B T Jl 1R e AT (BRLRR 22
RNV AL AT — PR R X LI ]
A1 PR A JFC A 1) B I [T ok R B A5 AR 5 SR R A
YL (Mitsuaria chitosanitabida)fPseudoduganella
eburneanH B R FEFRER DIRE" . AN B A
PEP-CTERM 45 #4350 85 1 Jo3 4t [F) /1 5 1 1R e 141/ 28
BT R 2 Ml e P e 3L R 30 1) — A il LR,
WEEEAR AT BE A2 A

B R 2% BK 38 (Prochlorococcus) A, TRHE 55K
% B 8 T ) FAE 23U PEP/Exosortase 7 ik B &
G5, W R > R 2SR, i 4 R T

4141 1% B A(Cyanoexosortase A, [ FRCrtA)FIB(cya-
noexosortase B, f#RCrtB)™" . W #E ¥ 4 CrtB,
FEFR T O 58 B3k PR ZE 0 3 P DA T80 00 YAt ot 0 95
Pt R BlerBEER™ . JoA TP T 35 2K 4
LR A (Microcytis aeruginosa)NIES-843 Pk 5 K 21
HH AR5 % E 33N S i PEP-CTERM 4 #4825 1
JR I E, W2 I Microcytis sp. MC19RkHE
R 2H o 45 i 454~ PEP-CTERMZ: Hodsh 2% 1 i
MM ZE TS 7 5 () v IR TR 3R 5 (Microcystis pan-
niformis)F ACHB1757#k 2 K 4H /1 th 2 3321~ PEP-
CTERMZE (1R, 88 (4nabaena variabilis
ATCC 29413)F1& Bk (Nostoc sp. PCC 7120)7H 4
WA 36 142 NPEP-CTERM & [ i 4 i 3L [A] .
Daniel H. Haftif )\ — L& 5 8 (1345 Cyanothece, Nos-
toc, Trichodesmium, Lyngbya, Arthospira) ™ % & H
—/NIE2K, #RZ Neyano PEP(TIGR04155), fECTERM
5 1 X AT SR GX XXX GXG(XFRAT B A I
BRI IEFP . IXLEPEP-CTERM S I 5 [H] fir 4 1) 11
5 AT e o WA R S8 B ZH MR I, HDhRe e AR
. JXLEPEP-CTERMZE KR ME (5 VF 20 1 v 2 R 41
BRI 1/2058, ARG . TA G B HHE
X LEPEP-CTERME H JiE 1] REIE i 45 7R 1Y) 70 16 5
Gt W R MR T, 5 M 4 22 b b A 1 B

JR A F SR 2R KIS 2 SR, S S AR AR (R 1
AR

3 BARE. REERSRSERRITER

R R B AA RN 2 A A sz (41 (22 ) o — P s A 4
AR IRAT 9, AT AN A2 — FPREER I A
B, AASATRE WG BRI M. B
1R BN (Quorum sensing, 4 5 AQS) A& il £ W 41
)45 2 AT ) — Fh 07 3, nT AR 4 Fh B % R B E
(Quorum) KA T I )R IE . MBI H & &
A H %S 9 T (Autoinducer, i FRAT) I BE (S it
90 % FE) AR AL, 1B 5 o IR BE R 2 s AR E S,
QSARG AR B R RIE TR . F 22 RPIE R
F2 BRI FH AN ] R N 2 5 22 20K N I (NV-acy1-
homoserine lactones, [ #XAHLs){E ANREAAR RN R 4t
MIALS T (AL-1). QSHJ % 2 it A= B ik 2 4 A= 4
RIG R RS S5RFER. Jidk
RO RAMNEAE R4 EYIBTY R 40
Mot . N LT R4 B QS B T 45 il 9 B 1) Jgk
e, [R] PR AT RE S R K AR T IR R B i R
S Dt SO R S = X N VBT S I a Y U =
KA BT (Gloeothece) o H AR PCC6909 H 177
C8 N-JE w42 B P g™, C8-AHL AR 2 AT LA
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TR R A AR . TR [EA
L2 IR AR EEPCC 7120 7 4E — > B A AHL /) i
I RE 10 B Bl 22 (K] (@ii C), % AT LA i — R A
AHL%> ¥, 7] B8 K QS/5E 5 (Quorum quenching, £f
PREEREEE KT S F AHL A 77 LA i1 0 JUE2 35 174
[ U S o i T R A AEQS M T SE e, e
5K AR S T W AR PCC-78204R ™ 4
IMEAHLEE 55 75, BERERRR T 2 515 %
REAIE BB TEE 18 -

FRPTRIEFCN 3 307 7 ok 2 4 A A K
2 OB BRI M A 1) R 8 B R (MCs) T e LA 15
SYIT D RE, AT B S AR R R A
AL 5 2 hE S RO O 3k R Y 3R A A S Ak
ZWE WD R TR, HE T A 1 Tl B R A AR O R R
U SR RN L R 8 M I OB TS B A D Tl B
R T, BRI R W 2 B .
BRREMBERAESHAERFPTRAGE
FAERM, AR, 15 P I Tosigma™ K R 10
RpoN sigmalXl T (% 1). MEEFIENES ST
(1 1ol B 9 B 3K T 45 1R 2 AR A 1 % S A A
A RpoNI1 5 22 [QRA VE 40 13 A Fr AN\, 75 2k — 2
W7 LA 7
1 KEISRFE SN EEMBERKER KBS R EZ R ERI
S REVE R SRR/ AR E R E R R E X EE LR
Tab. 1 Comparison of between bloom-forming cyanobacterium

Microcystis aeruginosa NIES-842 and floc-forming proteobacterium
Zoogloea resiniphila MMB strain

IS L LA I e o SRR

BEU/ 0 AT B e Y i e TSI (1] B R U PR UK
FE [K Extracellular polymeric PR ki) Microcystis
substance biosynthesis and b ).Zo.ogloea aerugznoiéz NIES-
colony/floc-formation genes resiniphila MMB 8
s s e AKEUIERIETE A2 A NRUEER

WAL E RN Uit SR T
- [ERE N ER N
% & A PEP-CTERM&K 1) Y1204 334
R 1AL ~e !

AT PEP-CTERM 2k [ 4 3% 4 *
[IPrsK-PrsR 414> &4t
/1 PEP-CTERMZE K3 3¢ % *
f¥1Sigma” [l 7-(RpoN)
R ARH AREN
4 RE

TR (10 7 T AL RAE AR A, 24 91E R
1 — TR T 7 T T8 R AT FE DR R e
TR K R 1) A R 8 35 A 2 B AT R R ) RE ) 4
JE, FLLC I AL 4 T AN AAE L ML (Synechocystis)
AT Atk T E R SR, b B v
IKHE R AENLH, 3R 2 AR ORI %S ), 424
PEPEBE DR A 2 L AT S5 A AL A A ol AR A T

AR TS T EERRE. HEAEAA
IR, 7 B s s AL AR T VR R 4, 2
CRISPR-Cas92 [ £ A W5 8 0 1 B, IRATT R
MBI Z R EM AR RINEA L. B
B N RN 7K A e AR ML A 9% 40 7 384 AN T i 2L 1A
HEE AL, Ha o 0 TR TR B 2 AL, PR3
TR KA R AW R IS AR .
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BIOSYNTHESIS PATHWAY OF EXTRACELLULAR POLYMERIC
SUBSTANCES AND COLONIAL FORMATION OF
CYANOBACTERIA UNDERLYING WATER
BLOOMS OF MICROCYSTIS

QIU Dong-Ru
(Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China)

Abstract: The harmful algal blooms (HABs) of Microcystis have frequently occurred in the drinking water sources
such as Lake Taihu, Chaohu, and Dianchi, posing a severe risk to public health and aquaculture. A series of physical,
chemical, and biological measures have been performed for controlling Microcystis blooms in recent years. The secre-
tion of extracellular polymeric substances (EPS) are required for cyanobacterial colonial formation, survival and bloom-
forming. Little is known about the biosynthesis pathways of EPS and colonial formation. Previously it has been re-
vealed that multiple putative PEP-CTERM domain-containing proteins are encoded in the genome of Microsytis spe-
cies and many other cyanobacteria. More recently, we have demonstrated that the PEP-CTERM proteins are required
for the floc-formation of Zoogloea resiniphila, a proteobacterium isolated from activated sludge. More interestingly,
Microcystis and many other cyanobacteria also encoded a subfamily of PEP-CTERM domain, termed cyano-PEP. It is
strongly suggested that such the recently found PEP-CTERM/Cyanoexosortase systems might play a central role in the
colonial formation of cyanobacteria. It remains elusive whether the quorum sensing (QS) systems are encoded in cya-
nobacterial genome and whether the QS is involved in the formation of Microcystis blooms. It is urgent to develop the
genetic manipulation in Microcystis and other bloom-forming cyanobacteria for identification of relevant genes and
mechanisms underlying colonial formation and for development of Microcystis bloom-controlling techniques.

Key words: Cyanobacterial blooms; Colony formation; Extracellular polymeric substances biosynthesis; Protein
sorting; Quorum sensing



