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RESEARCH ADVANCES OF SIGNALING MOLECULES-MEDIATED ALGAE
CELL DEATH SIMILAR TO PROGRAMMED CELL DEATH

HUANG Su-Zhen"’, ZHANG Lu', PENG Xue"’, GE Fang-Jie', LIU Bi-Yun',
ZHOU Qiao-Hong1 and WU Zhen-Bin

(1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan
430072, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Algae are important primary producer in aquatic ecosystems and play an important role in the process of ma-
terial conversion and energy migration. Programmed cell death (PCD) is a self-regulated cell death mode that is con-
trolled by different signaling pathways. Studies have found that when algae are subjected to environmental stress, the
algal cells exhibit PCD characteristics in morphology and physiology, accompanying with the changes of reactive oxy-
gen species/nitric oxide/calcium ions (ROS/N O/Ca2+) levels. The researchers speculated that ROS/N 0/Ca’’ maybe be a
signaling molecule to mediate the changes of Caspase-like enzyme activity in algae cells and trigger a process similar to
programmed cell death. However, little is known about how signaling molecules trigger a process similar to PCD in al-
gae cells under environmental stress. This paper reviews the research progress of signal molecule ROS/N 0/Ca’" media-
ting the process similar to PCD in algae cells and the cascade effect between signal molecules. Finally, future research
in this field similar to PCD is prospected.
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