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AW FE R I, A VT35 9 £ 28 (IR AR f A ep
FEAR B B AT R AE A0 A T I R R /K S B
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Tab.1 The body length and body mass of two fish species in the present study (Mean+SE, n=135)

I JiK Ji5 £ Chinese sucker 1 4645 i) i Qingbo
X 8 2H Control 1 & 2 Predation t-test X} 8 2H Control 1 & 2 Predation f-test
& £:Body length (cm) 6.41£0.05 6.64+0.05 P=0.082 7.29+0.03 7.39+0.03 P=0.178
{4 # Body mass (mg) 4.82+0.11 5.53+0.13 P=0.032 7.49+0.08 7.69+0.08 P=0.348

®2 MAMBRIMLNLESHHNERMHFEGRIT 2E

Tab.2 The effect of species and predation acclimation on the measured variables based on a two-way analysis of covariance (ANCOVA)

R Index AIWKEE Uy RBEBREAMKTIgM  EHEE & & Lysozyme #8504 KBRS 1ESOD
P34% & Covariate F,3=6.913 F) 15=10.275 F\ 19=5.755 F| 19=2.327
P=0.021 P =0.606 P=0.027 P=0.144
Fh2E i Species effect (S) F\3=184.070 F) 15=58.643 F|19=3.602 F| 19=2.407
P<0.001 P<0.001 P=0.073 P=0.137
AEFEFY M Treatment effect (T) F3,=0.395 F\ 19=31.227 F|,19=43.673 F119=2/712
P=0.534 P<0.001 P<0.001 P=0.116
L HAEFSXT F\3=0.993 Fy 19=11.193 F),19=1.501 Fy 19=0.412
P=0.327 P=0.003 P=0.235 P=0.529
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Fig. 1 Effect of predation acclimation on variables of Chinese sucker and Qingbo (Mean+SE, n=9 for swimming speed and n=6 for other

variables)

NE)FREE (a, b)2 IR I £ R o A 5] i) 6 17 E i 7] 22 57(P<0.05); L5 (%) 7m0 IR L AN 68 YAk 20 B8 77 1E 22 5:(P<0.05)
Fz3 ., FHRIMFAMHHEREREMN MR E REKEMBELFKTHEEN=ZEZNHESTE

Tab. 3 The effect of species, predation acclimation and predator exposure on plasma cortisol level and variables of spontaneous shoaling
behavior based on a three-way ANCOVA in the present study

6 Index e TEOR T E BRI AR B
Cortisol Median speed Time spent moving Inter-individual distance
P34% & Covariate F\ 6=4.476
P=0.038
Fh M Species effect (S) F 63=46.949 F37=5.739 F37=65.579 F13,=21.194
P<0.001 P=0.023 P<0.001 P<0.001
LbF LI Treatment effect (T) F65=17.203 F13=1.019 F3=1.641 F13,=0.157
P<0.001 P=0.320 P=0.209 P=0.695
% M Exploration effect (E) F\;=18.489 F\3,=0.251 F3,=2.809 Fl3=4.147
P<0.001 P=0.620 P=0.104 P=0.049
L HAEHSXT F ;=0.929 F|3,=0.061 F|3,=0.017 F3,=0.681
P=0.339 P=0.806 P=0.897 P=0.415
L HAEHSYE F| 4=12.805 F3,=0.025 F3,=0.054 F) 3,=0.002
P=0.001 P=0.877 P=0.818 P=0.964
ZHAEHTE F) 63=0.653 F 3,=0.005 F3,=0.041 F3=4.679
P=0.422 P=0.946 P=0.841 P=0.038
L HAEHISXT=E F 63=2.097 F35=0.282 F3,=0.857 F 3,=0.067
P=0.153 P=0.599 P=0.361 P=0.797
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Fig. 2 Effect of predation acclimation and acute predator exposure on variables of Chinese sucker and Qingbo(Mean+SE, n=6 for plasma

cortisol level and n=5 for other variables)
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THE EFFECT OF PREDATION ACCLIMATION ON SWIMMING BEHAVIOR,
STRESS AND IMMUNE RESPONSES OF JUVENILE MYXOCYPRINUS
ASIATICUS AND SPINIBARBUS SINENSIS

ZHOU Long-Yan, LI Xiu-Ming and FU Shi-Jian

(Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal
University, Chongging, 401331. China)

Abstract: Whether fish species can adjust their physiological and behavioral traits well to the change of environmental
condition of their habitats are key for the future fate of the local population. The aim of the present study was to inves-
tigate the physiological and behavioral responses of two endangered fish species, i.e. Chinese sucker (Myxocyprinus
asiaticus) and Qingbo (Spinibarbus sinensis) subjected to short-term predation acclimation. We measured the maxi-
mum acceleration swimming speed (U.,), spontaneous shoal behavior (percent time spent moving, median swimming
speed and inter-individual distance), innate immune indicator (plasma lysosome activity), specific immune indicator
(plasma IgM level), and antioxidant defense ability (plasma SOD activity) of either predation acclimated (reared with
snakehead, Channa argus without direct contact) or non-acclimated (as control) juveniles of Chinese sucker and
Qingbo for a period of 1 week. The plasma cortisol level and spontaneous activity were measured under both predator
present and predator absent conditions. The main results of this study are as follows: (1) Qingbo showed stronger swim-
ming capacity, more active spontaneous behavior, higher plasma cortisol and IgM levels as well as more profound re-
sponse of both plasma cortisol and IgM level to predation acclimation, compared to those of Chinese sucker. (2) preda-
tion acclimation elicited higher plasma cortisol and IgM levels and higher plasma lysosome activity, especially in Qingbo. (3) acute
predator exposure resulted in higher plasma cortisol and shorter inter-individual distance whereas the later only mani-
fested in non-acclimated groups. In conclusion, both non-specific and specific immune function up-regulated after pre-
dation acclimation possible via the increased release of cortisol which might evolved with purpose to a fast recovery
after possible non-lethal hunting. These adjustments indicated that predation training might act as a potential training
process for fisheries releasing in the Yangtze River water system. The distinct difference in behavior, immune system
and their response to predation acclimation or acute predator exposure suggested that these two fish species might have
different fate in near future due to the unpredictable change in environmental factor such as predation.

Key words: Predation acclimation; Behaviour; Stress; Homeostasis; Immune response; Physiological response



