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Tab. 1 Primers used in this study

GlE/EZy S il i
Primer Sequence (5'—3") Usage

Adorg-3gspl  GTGACAGCGAGGAGAACA 3'RACE-PCR
GGACTC

Adorg-3gsp2  ACTCAGAGCAGCAATCGTG 3'RACE-PCR
ATCC

Adorg-5gspl  TCGCTGCTCGGCTCGTAAGT 5'RACE-PCR
GGGA

Adorg-5gsp2  GGACAGGGTAGCCGAGCGC 5'RACE-PCR
ACTCT

UPM CTAATACGACTCACTATAG RACE:# 5|
GGCAAGCAGTGGTATCAAC ¥
GCAGAGH
CTAATACGACTCACTATAG
GGC

NUP AAGCAGTGGTATCAACGCA RACE# A5l
GAGT /)

Adorg-qF CTGGGAAGGGTAACAAGCG %t ERPCR
TAAAC

Adorg-qR CCTCTTCTGCCACCTCCTCT %t ERPCR
ATG

Adorg-anti-F TGAGAAGCCGCCAGTTGTT fg%&z&x
G R

Adorg-anti-R  TAATACGACTCACTATAGG JREA 438 % X

GCTGAGGCGTAATCTGTAA 154t
AACTTG

Adorg-sense-F  TAATACGACTCACTATAGG JRfr 425 IE X
GTGAGAAGCCGCCAGTTGT 54t

TG
Adorg-sense-R  CTGAGGCGTAATCTGTAAA JFALZ4%E IE X
ACTTG TREL
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Fig. 2 The expression of Adorg gene in different adult tissues of
Yangtze sturgeon
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Fig. 3 Histological characteristics of different stages of Yangtze sturgeon gonads
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stage II; G. gonad; Og. oogonia; SG. spermatogonia; PSP. primary spermatocytes
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Fig. 6 Cellular localization of Adorg gene in the ovary and testis of Yangtze sturgeon
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A. localization of Adorg mRNA in the ovary; B. localization of Adorg mRNA in the testis; C. signal of sense probe of Adorg mRNA in the
ovary; D. signal of sense probe of 4dorg mRNA in the testis. Og. oogonia; SG. spermatogonia; PSP. primary spermatocytes; SSP. secondary

spermatocytes
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CIONE AND EXPRESSION ANALYSIS OF ORG GENE IN YANGTZE
STURGEON (ACIPENSER DABRYANUS)

YE Huan, WU Meng-Bin, WEI Qi-Wei, YUE Hua-Mei, RUAN Rui, DU Hao, LENG Xiao-Qian and LI Chuang-Ju

(Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries
Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China)

Abstract: Yangtze sturgeon, Acipenser dabryanus, is a freshwater fish that mainly distributed in the upper reaches of
Yangtze River and its tributaries. Male and female Yangtze sturgeons in the wild reach sexual maturity at 4—6 and
6—38 years, respectively. Currently, it is a critically endangered species due to overfishing, habitat degradation and pol-
lution. In order to protect and restore this species, many efforts have been made, such as building nature reserves and
fishery stock enhancement and releasing. However, the wild population of Yangtze sturgeon has sharply decreased, and
it is hardly observed in the Yangtze River now. Previous studies, such as diet supplemented with exogenous hormone
and juveniles injected with peptide, were performed to short its sexual maturation time, but no effect has been observed.
The oogenesis-related gene, org, plays an important role in the growth and development of oocytes in teleost fish. In
order to reveal its function during the oogenesis of Yangtze sturgeon, a full-length cDNA of an org homologue was iso-
lated (designated as Adorg), which was 1031 bp, encoding 233 amino acids. Multiple sequence alignments showed that
AdOrg shared the highest sequence identity (49.5%) with zebrafish. By quantitative real-time PCR analysis, Adorg
mRNA was specifically transcribed in the gonad, abundant in the ovary and weak in the testis. Transcription of Adorg
was not detected in other somatic tissues including liver, intestine, spleen, kidney, heart, muscle, gill, pituitary and hy-
pothalamus. During embryogenesis, Adorg was proved to be maternally transcribed, maintaining a high level before the
gastrula stage, and then declining dramatically in later developmental stages. The transcription of Adorg was very limi-
ted in undifferentiated gonads, but it sharply increased in the following process of oogenesis, with its highest expres-
sion in stage II oocytes. In situ hybridization of gonad indicated that the signal of Adorg mRNA was specifically lo-
cated in the germ cells. In the ovary, Adorg signal was weak in the oogonia, and it increased rapidly in the cytoplasm of
primary oocytes, and became stronger with the development of oocytes. In the testes, the expression of Adorg was re-
stricted to type A and B spermatogonia, and was barely detectable in spermatocytes. These findings suggested that
Adorg gene might play vital roles not only in oogenesis, but also in development and differentiation of germ cells.
Knock-down or knock-out of this gene is necessary for exploring its specific function. These results paved the way for
understanding the function of Adorg gene in Yangtze sturgeon during oogenesis.

Key words: Acipenser dabryanus; org gene; mRNA expression analysis; Oogenesis



