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JN U A b R BT 20 K% B s 2 K8 v AR SI2 By
RS T Y wE AU R p L 5 D N A
(P. tetraurelia). —MAREH (Oxytricha trifallax).
TF IR R L (Stylonychia lemnae)~ % -1/INJNH (Ich-
thyophthirius multifiliis) ¥R 3 WU\ H(Stentor coe-
rulews) IFH FHE 73 7] T 38k 15 JHL 35 DR 20 25080 2 P sl
(Ciliates.org, http://ciliates.org/index.php/home/wel-
come); 7K T8 BE 45 L (Pseudocohnilembus persa-
linus) A 50 T # H PPGD(http://ciliates.ihb.ac.cn/
database/home/#pp)~ JEUFANH(E. crassus) X FE ik
W& VA HU(E. forcardiin)I2E I 085 T 2 H Gen-
Bank ¥ i, KT 1 () 224K I U R 1 (Fiila-
mentous thermosensitive protein Z, FtsZ)/F 51 T # H
GenBank (3  (KIH34997.1) . F - H i@ #EAL A 1
FIFI18S rRNAFF 4 T % H GenBank #4fs -
E. octocarinatus(AJ310489.1). E. crassus (AJ310
492.1). E. focardii(EF094961.1). I. multifiliis(KJ
690569.1). P. persalinus(AY835669.1). S. coeruleus
(AM713189.1). O. trifallax(F1545743.1). S. lemnae
(AMO086654.1). T. thermophila(M10932.1). P. tet-
raurelia(KY852452.1) M1 Homo sapiens(M10098.1).
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0.01), PR 5K 48 € 15 B WIS & B 3 B 7 917
queries, XfNCBIfETT 4% 25 A £(¥% # (Non-redun-
dant protein sequences database)if 1T Blastx % 2% (E-
value<<10 ), #2145 2% 5 51| Blastx 45 5 ) UG e 191 %
B NE & A, HEBlastx s F b T FC 0 VE B A5
B, IR AN S R B SR . A X
JN VA b HUG S 2 K4 P HEAT Blastnd8 R, $R. 5 %S
LRI SR AR o
14 J\BpiF M MEE R R GE R EIE
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1.5 HMERFESH

F FIHE 26 73 7 #FEMBOSS H 1) GetOr 2 7
TR 2R A O R K BT, FFTEXPASy (http:/
web.expasy.org/compute pi/)7E 2 Tl H H# i 4> 1
& R A Clustal X (v2.0)!""ft 2 5 %1 L #5425 (Do
complete alignment)%] J\JJIJEA M HL . 26 DY XU/ MZ B

JEH B d R RE A AN RS B A T 2
FEAI LR o3BT (BRIAZ D) -
1.6 IiRHIFIE K Western blot53T 4
J\DITEA S B B B 1 2 SRR P A Hh A B4
WA AREIR A Edl. EA T AL AT
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Asn-Lys-Asp-Trp-Gln-Asp,,0) 17 Z Ik & 1%, H&
) 22 K G P T A A o SR EC\ T IiEA b LU
HH, BCARF &N E & A iR E, SR AR
R 10% 0 SDS 58 TR M It i B e 3E AT 73 89, %
JIEE, FH 3t PRI T B, 42 B8 12 6007 LU A5 A% B Eon-tub %2
SeREUAR, 4°CIERE ;IR R — 3T, iR
H 1h, FIPBST: 47K, 4K 10min, FOdyssey4L 7k
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KRB0 E R A REER 1), T RUEXT
g8 R AT E DR A B BT R B
FRH Aoy Bs vy 8 e XS PMEFEE 1),

J\IHEA D L 2 A (Eoa-tub) IV 5% i 3L 40 &5
6N, HrrContig18065 1 & H MR 741 5 CL kil
(I Eoa-tubf¥ I MR IEFR AN A, A S AL 5 Ek
T I Eoa-tub2d 2 1R 7 41| — B BIK(30.36%—
42.18%), {HBLASTP LY} 45 5 o 35y Ho A A= 0 1
of U 1, 225 g A Y IS O B R g i 44
TP BATH X S AR s i o R 1 R A
i 44 No-tub-like. BIUE & H I F IR FE10 L,
Ho 4NN 5 AR IE I EoB-tub i 5 41 — St 5k
T95%", Hdx 5 41 [EIVE P AR R 6/ 5 B iy 44 -
tub-likeo y~ & e PUAN T ZKIE &AL & — AN FE A,
B HAME R FJEEFEGE 1),

BT A, ST A RO RN E
T, BERKE. HES) TR MRPKMEME
TT N (GR 1) TEESRAEIEE b, 38T B
Eoa-tub-like-4# Eoa-tub-like-5 4NN e 2 1 5
S A . BARaFIBIE AW KR A 2 -2
BRI, AFL[R]— 30 S M A [R] B 7 P 0 7K P 477 B I 22
Bl(E 1). EallZKEH, Eoa-tubfIRPKME N
2601.66, it = T JUF Eoa-tub-likeFE R . 1EPIV 5K %
i, Eof-tubl. Eof-tub3. Eof-tub4} Eof-tub-like-
4FIRPKMAA B S & T 50 i) F A B b, iX — &5
SR B R) — I R A AN [) 25 R A7 TE 3Rk I R S 1
N H A AN AP0 T BE
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22\ b REEEEEEME GRS

W F AT 51 5 B R HDNA JFFIRH T HXT, %\
JUe A b B B R R g AR R S5 A AT T A
(12). I A AR & A P m B i 454, T
Eoa-tub-like-AFEoo-tub-like-51%78 #3R, FRYE FJE
EEXT 5 SR FAR R S5 A HEAT 1 70 . SRR T
FUAHEREA N ST, PILFIRH, B Eof-tub3E PRI
HWET, (HANEop-tub-like R & — N Z AW
T, T HREE N & A AR 2 REOK, &K
11086 bp, HALIIN2S bp, HARIEF AR ALY &
AN AE T [ERHEERIE, Eon-tubE K%
A AAE N LB, A THEMZ LD e R I
o KA+ AL PR AL BE A S i (Programmed ri-
bosomal frameshifting, PRF).
23  Eon-tubBEFEZHIRIEMHAZEARTLIBE

U A D R PR A7 T R ) e R A W AR 1
G B ST Eon-tub3E R 45 I, 2 %

HAFAE2 AN 53 B 8 ) R TR SR HE (] 3A), ORF1HY
63 I AC 4R % 5 7 ATG 1 AN 74847 [ 2% 15 % 1 -1
TAATA K, Fifs— 219 MR I F51); ORF2H
72207 FIATG2 13790 I TAA2 LR, gt — A
200N RAEEM T A . RAEMETAALL KA —IR
+1{7 # 15 (Putative ORF), A RESmID 141 1M E R
H BRI SERE B T

N T UESSX — R, B /S Eon-tubts 5 5 JE
HR Sy 2R A b I RIE B A AT T 2 R A E R
(Kl 3B), 45 F W oR LRG0 A 8 2 R () RN R A4 ik
FE(N) R BEOR S o Ak, FIF ) 4% 1 Eon-tub £ T %
PR IE T Western blotsF Il 1 /\ WiiE4 b S 410 o Py /&
BAEAE 2K MEon-tubf . WK 3CH7R, Western
bloth il Bl — % K/ SHEN K2 KEA D T =
(46.66 kKD)AEF HT M 5% . LLESEREW, Eon-
tubE R S N+ 1A dm FEVEAZ MR RS D S (R, L0
FFHINAAA-TAA-T.
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Tab. 1 Molecular characteristics of the tubulin genes in Euplotes octocarinatus

i[RI/ 9F 5K R FERHID WETM SHTSFIIKE 3RmFFIKE RPKME  &HERKE /T EMolecular
Gene/Subfamily Genome ID Introns number 5’ leader (bp) 3’ tailer (bp) RPKM value Length (aa) weight (kD)

o-tubulin

Eoa-tub Contig18065 0 78 99 2601.66 450 49.62
Eoa-tub-like-1 ~ Contig28852 0 51 71 0.22 445 50.73
Eoa-tub-like-2  Contig27230 0 40 31 1.91 483 55.97
Eoa-tub-like-3 ~ Contig3451 0 57 33 1.54 459 51.62
Eoa-tub-like-4  Contig27158 0 38 46 / 456 51.56
Eoa-tub-like-5  Contig26869 0 38 57 / 457 52.34
P-tubulin

Eop-tubl Contig5259 0 50 127 231.98 444 49.63
Eop-tub2 Contig5984 0 54 51 1.15 444 49.60
Eof-tub3 Contig8213 0 54 143 168.77 443 49.65
Eop-tub4 Contig4144198 0 55 143 131.57 443 49.60
Eop-tub-like-1 ~ Contigl18362 2 33 44 2.19 435 49.87
Eof-tub-like-2  Contig25579 5 31 38 1.69 454 51.88
Eop-tub-like-3  Contig29123 4 35 101 1.71 444 50.90
Eop-tub-like-4  Contig6445 0 79 79 169.66 467 52.44
Eof-tub-like-5  Contigd144404 1 41 38 3.42 433 48.93
Eop-tub-like-6  Contig9575 0 39 41 1.08 505 58.35
y-tubulin

Eoy-tub Contig11092 2 49 82 18.528 461 52.04
O-tubulin

Eoo-tub Contig24288 1 44 13 1.03 423 48.54
e-tubulin

Eoe-tub Contig17307 2 80 36 3.96 499 56.51
n-tubulin

Eon-tub Contig8731 2 34 51 5.89 410 46.66




1008 K& A& Y ¥ 45 %

98 Eo a-tub-like-5

—— 99 Eo a-tub-like-4
: 233 Eo a-tub-like-3
Eo a-tub-like-2 | ¢
Eo a-tub-like-1

90' Tt o-tubl

99 Pt e-tub €
_”l:'jl“ t e-tub
99 Pt 3-tub 5
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100 Tt n-tub

27, Pt 1-tub

Eo B-tub-like-6
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Eo B-tub-like-4

Eo B-tub-like-3

Eo B-tub-like-2

Eo p-tub-like-1 p

Pt 6-tub
97,Pt p-tubl

52|,Eo B-tub3
66-Eo B-tub4
Eo y-tub Y

61 Tt y-tub

BT AR SR 8 B R R R 4 W

Fig. 1 Sequence analysis of the tubulin gene families from

Ec FtsZ

Euplotes octocarinatus

F R4 b S (Bo, REAR) WA U 5 (Te) B 28 DU /N B el
(PO 8 A R B R ALUSR Y, R B B FsZ & 1 4 9 4h
Fft. BHRMEUE S IR RA T 8— A0 6

The maximum likelihood phylogenetic tree based on the deduced
amino acid sequences of tubulin genes in Euplotes octocarinatus
(Eo, in bold), Tetrahymena thermophila (Tt) and Paramecium
tetraurelia (Pt). The FtsZ protein of Escherichia coli (Ec) was
used as outgroup. Bootstrap values are displayed as percentages at
each tree node

24 ARIAERFREZAERMLELRS N

N T IR B A AT R G, X 54
TRRORAZ PR 2H L 7 0 48 B R 0 a1 Bk DAL
177 %2 (B 4)o N WE R B bR 5 DO U %
JB H Bk 1 AR IET T AR T R
BIFFE N G0 B i ER B D s e ol i 9 2 BRI 5Kk
(119328, ARBEFE AT I LA £ 6 d it B R R 4
FBAANa By yo 84 e AN

SR e e S AT N G -4=F - TP R (ER2
AN S E R P& R AN E . K2
21 S oM BAE B B I SR B A A B A
DL BEAL, T 2 /N R U (Ichthyophthirius multi-
Siliis)BCH — M oflUE B A FE B, 7K Dy BREF H(Pseu-
docohnilembus persalinus){{H —ABHUE & H &

o JUF P A 2506 By 8 o B B AN B AN
24, AR BE MW\ HL(Stentor coeruleus) & A 3yl
HEHERAER. K4 ER NS HINS. e il
B E B, R\t A 2 e B AR A
K P AT ) S Ml B A R R & A 20 . B4,
Fr A H AL R S A a-tub-like M B-tub-like Tl
B AR, EE A 2 /N IR 27 AR R K
WO A A 22 L o AN BIUE Br L JE I, 0
5E Bltub-like S & F A .

E NI I RY b2 | e PN EA RS SN /LN
A b R 1N & U o B 2R TR, T i KR
JEJFEA D ORI ¥ YA b S A 23 & M o B R
HEEH ;WA b G S a-tub-like S B 1 BE T,
M0 S A b EFNIE Vi A b X G 24 o-tub-like U B
FIEEDR o\ A I H i B A 2 1 2 R T 5k o,
Bz, BfEAN 2 mBE A E R 6N p-rub-
like T8 T A HE A, SR AN G 1A & SR BRE
T R FI2AB-tub-like TS Hr ] 15 VA4 b
B AN S BIE B B IR LA B-tub-like WU E
HHEER.

Eoo-tub] (el — 100 bp
Eoa-tub-like-1 ==
Eou-tub-like-2 (=
Eoa-tub-like-3 =)
Eoa-tub-like-4 (=~
Eoa-tub-like-5 (-~

A e————

Eof-tub2 (e~

Eof-tub3 (= e

Eof-tubd (=i el

52 bp 27 bp
Eop-tub-like-1 (= - N
148 bp 46 bp 1086 bp 36bp 25 bp
TSI IO R S— S
152 bp 25 bp $44bp 25 bp
Eof-tub-like-3 (= e S =
Eop-tub-like-4 (e =
28 bp
Eop-tub-like-5 (= - R
Eof-tub-like-6 (=
26
Eoy-tub ._.._%bp o ")

39 bp
Eod-tuh (==

139 bp 43 bp
Eoe-tub (i~ R

28 bp AAATAAT 57bp
Eon-tub

B2\ A b RCE d R DR A Bk ) 5 s 7
Fig. 2 Schematic representation of the Fo-tubulin nanochrom-
osomes structure
WA R g R i i, SR TTHER R AME T, W& T
JEbRAE BT
The ellipses indicated the telomeres of the nanochromosomes. The
black rectangles represented the exon. The length of the intron was
listed above the line
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ATG1 TAAL
Eon-tub
ATG2 TAA2
ORF1 ATGl  0660bp 1Al
ORF2 ATG2 603bp  TAA2
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1234
Putative ORF ATG1 1234bp . TAA2
A
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- Eon-tub

—_—
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Fig. 3 Programmed ribosomal frameshifting is likely required for
expression of gene encoding n-tubulin in Euplotes octocarinatus
A. B XIEA T b5 T Eon-rubJE R ) 4R %5 B F1
LB T I AL B, A R R AR B AL 7 RN £ 1B R 2 RE R
M =ANTF O SEAE . B e 18 37 5| AAAUAAUF 7% (6 5 14
Ko, BAL b OB HE R+ 13 AE B R 0 & R R 7 51 4 i 2 T
mRNAJF 3 77 F1F 757, ORFE 7~ FF i B i5:4E (Open reading
frame); B. J\JIi#4 b Hn SO B2 B RS R oz B I IO S E R 5 51
5Paramecium tetraurelia (Pt). Euplotes focardii (Ef) X
Euplotes crassus (Ec) [R5 2 (1 LLx, HEM 0047 5 FH 2
FERIR; C. I H # 4 FEon-tub 2 70 B 14 #E 4T western blot4)
Hr, VKB 1FI25 R R AR R PUR 2 IR R B a5 K. &
Sk AT N Eon-tubHI 47 B, Eoo-tubfF AN 2, MrfXi3R & A Marker
A. Close-up of the frameshift region. Relative positions of the
multiple start and stop codons in the Eon-tub gene sequence were
shown. The putative slippery sequence AAAUAAU motif is
shown in light type. Conceptual translations in the 0 reading frame
and +1 reading frame are aligned above and below the mRNA
sequence, respectively. ORF, open reading frame. B. The parts of
the putative frameshift site of the n-tubulin of E. octocarinatus
(Eo) are aligned with the respective homologous proteins from P.
tetraurelia (Pt), E. focardii (Ef) and E. crassus (Ec). The putative
location of the frameshift is marked by black dot. C. Western blot
of total cell lysates probed with Eon-tub antibody in absence, or
presence of the relative antigenic peptide (lanes 1 and 2,
respectively). The Eon-tub recognition is indicated by arrowhead.
Eoa-tub is used as the internal control, Mr represents protein
Marker

X B Ra X BIUE B SR 51 BEAT R 4t
KA DH(E ), & RRYI A 8 B R & i

0.05 93 Euplotes crassus
100| - Euplotes focardii

99 -Euplotes octocarinatus

Oxytricha trifallax

100 Stylonychia lemnae

Stentor coeruleus

-Paramecium tetraurelia

Pseudocohnilembus persalinus
69 I:Ichthyophthirius multifiliis
100 Tetrahymena thermophila

Homo sapiens

Tubulin

o o-tub-like B B-tub-like vy & & m 6 1 x

2 2 1 2 2 1 1 1 0 O 0O

3 2 4 1 2 1 1 1 0 0 0

1 5 4 6 1 1 1 1 0 0 0

3 0 1 0 2 2 2 1 0 0 0
1 0 3 0 1 1.1 1 0 0 0
1 3 2 6 1 1.1 1 0 3 0
9 0 10 0 2 1.1 0 0 0 0

K4 J\JBae A 5 HAET 6t b B B e R R R B
Fig. 4 Comparison of tubulin genes in Euplotes octocarinatus and
other ciliates

RGUR B RRR AR PRI 18S rRNAFT HIR F e R ASRIE
R, UAAERSME . B RAE LA 4 e 8 T4 — A
A, B B KRR AR 1

Phylogenetic tree was constructed using the maximum likelihood
method based on the 18S rRNA sequences. Homo sapiens is an
outgroup. Bootstrap values are displayed as percentages at each
tree node. The gene number of each tubulin subfamily was
indicated on the right

o/ BIUE H 1 B B FRMUR N — K, T a-tub-like F1B-
tub-like & & H IR Z AN A IR, BR4FE
H ) a-tub-like F1B-tub-like i & 8% ([ B A L AN kT
MURTIR . BEAh, FREe ot E du i s B B B R 7R kAL
AR R AR T R A, 9] G v AR D R T -
tub-liked R Ttf-tub-likeS 3 K [ JEE A B )2/ 46 i
ol B H 3K Eca-tub1 flEca-tub2, TE AL F AT
T EHEARGRRI2N 50 B, R EATRIE T Fh A 1) B
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TR ERZ A, R RCE 8 A 56 Ry 5103 1
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SEA NN 52, FERIT TN S RE S DRIP4l
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17 RE B AR EAA, o BATYHRUE R E
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Phylogenetic tree was constructed using the maximum likelihood method based on the deduced amino acid sequences of o tubulin

subfamilies sequences (A) and  tubulin subfamilies sequences (B) from different ciliates. The FtsZ protein of Escherichia coli was used as

outgroup. Bootstrap values are displayed as percentages at each tree node. Pt. Paramecium tetraurelia; Tt. Tetrahymena thermophile; Pp.

Pseudocohnilembus persalinus; Im. Ichthyophthirius multifiliis; Sc. Stentor coeruleus; Ot. Oxytricha trifallax; Sl. Stylonychia lemnae; Ec.

Euplotes crassus; Eh. Euplotes harpa; Eo. Euplotes octocarinatus
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IDENTIFICATION AND EVOLUTION ANALYSIS OF TUBULIN SUPERFAMILY
GENES IN EUPLOTES OCTOCARINATUS

WANG Ruan-Lin, XIAO Yu, LI Jia and LIANG Ai-Hua

(Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi
University, Taiyuan 030006, China)

Abstract: Microtubules represent one of the major cytoskeletal filament systems of all eukaryotic cells. They play a
key role in spatial arrangement of the organelles, intracellular transport, nuclear and cell division, and ciliar motility.
Ciliates are ideal model organisms for studying the functional diversity of tubulins. Here, a total of 20 tubulin genes
were identified in the macronuclear genome of the ciliate Euplotes octocarinatus. Based on ortholog comparisons and
phylogenetic analysis, these genes were clustered into six groups: a-, -, y-, 8-, - and n-tubulins. Sequence analysis and
western blots suggested that the n-tubulin gene of E. octocarinatus required a +1 programmed ribosomal frameshifting
to produce complete protein product. The slippery sequence is AAATAAT. We further systematically identified tu-
bulin genes from 9 other ciliates and compared them with E. octocarinatus. The a- and B-tubulins of all investigated
free-living ciliates are encoded by multigene families, and each tubulin isotype may be used to form distinct tubulin
structures. Phylogenetic analysis showed that a- and B-tubulin genes underwent multiple independent duplications and
losses in ciliate. Our study lays a foundation for studying the biological function of tubulins and exploring the mecha-
nisms of microtubule diversity.

Key words: Euplotes octocarinatus; Tubulin; Sequence analysis; Phylogenetic analysis
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