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1 E B X 4R K5 B B E A R RIA RSN

KXE F OB OB Rk
(R, BT RSP A R0 5, 59 315211)

FE: NIRRT KM T (Hippocampus kuda Bleeker) I RTE R £ R ER B 25 4F T 195 B R IE KPR L LR,
X S8 25 TR ORI D AR A R St AT T SR 7 . X ZL(CK, 25%0) 1 # (HS-test, 31%o) F1EK 21
(LS-test, 17%o)WHit 41 35K 1571794 4 B I R #% (Unigenes), N5041780 bp, T2 /& 4820.71 bp. = #hWrE 4
L A L, L3k 1327400 22 S5 3RIA B H] (DEGS), H 4149541 DEGs [, 2245/NDEGs T ifi; 5 X} BEZHAH L,
R e 40 3L3R1537 151 DEGs, #1854/ NDEGs 1, 1861 MDEGs N, mi/{&#hHiE ADEGsZ KEGG %
I & BRI, /I Eh B e 35 e 3 ORI L 2l AU Y SR RRARU . e AL R AN TR D7 R AR A OG 2k
DRI 52 2 5Eme . For, A R P B e o AU R 0 A U P A DG R DR Y 3 U, s 3 A B R 7 1 A 11 A O
FEDR 25 TN R, T v A e I G AR AR DGR DR R 2 B . AN I R BE A PR KU A ) I
S 43 I O ik B G A R B K Gst. Hsp70+ Hsp90+ Sod. Bcl-2+ Gadd45a. Terf~ Tap2FTraf3, RN
RUFAH I R Fadsd6 Fas. Sqles CypS1. Elovi6F1Sic27a6, fg MM K IEH Vicad. Pdhal. Mdhl.
Idh3b. G6pdMSdhd, J—SSFILFRA WA CIE N Glde Atp6viel Sms. Fadh Asl. Ass1FIGlud1%, A {E
SN R Ay e I A 35 AR B S B TR o F A R R R e T R S 4 A AR S TR AL A
FUBLE | — 58 HEA, A BT 5 77 5 52 e b B A i 14 8 8 C5U S K B 4 AR BT PR

KB Kifeth; #hEEWE; Ford4U; ZRFIAEN

hESES: Q3441 SCRRARIRAD: A

WA AR T R B M G2
R, PR ERIE A S A A S 2 I BRI T 3
FOHL IR R IR, (HilE SR R R A S H AR
1. DR, W S IR GENMV AR B Ty, AT DL AL T
SR, EREMS IR LI A IR R AR RE
Xl I BEBE A BT e T V207 AR, B8
FPAEE 2 SR BB R AR, 130 ) 0 3 32 phy 3R B A
S HA P B T S

HERARERKEREEINER R —, &
JEAR AN ey B AR A R B B A B A A R TS TR AT AR
WRRm™ . O — LB U KL P 2K, HF
W e 82 A Ak £ B 0 K A A7 R A KT, SE R
AR e R R 7 T R i £33 e
BiEhia, 3 Em RN N AN SR 2, it R

Y #5 HHA: 2020-07-01; 53T B EA: 2021-04-07

XE%HS: 1000-3207(2021)05-0995-10

AR 2 2200, PR O - 1 4 AR, kT s AR )
Rl rEiE ERS M aERS". L mm Rk
B, 5 £ B 8 B 5 (Nibea albiflora) T E R DT
R AN R S 1 e R BT R AR R AR . B RE
gt KK 3 e 2 25 FAIR 1 /N e (Cherax qua-
dricarinatus) 5 FH R FE K (Tol I3 K R ProPOFER])
IR X TR T D 3R S 1 T 5T
AR HMES . DR T Stk s, ol i
T 10%0—32%0 %k FE PR 853 Fp 1™, (HLE T &hy Aot £k
BAHIE N RE )2, B SRR S ENSE A,
FE 103533 R 5 A A TR A sk B2 B R R RE
sk TR R SR T 4 A R B R K
YRk A N E S R B AR AT SR IR AN R B2, A 5 DA
FRHE KIS (Hippocampus kuda) B TR 4.,
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K HIRNA-Seqfi A XS & B 18 R K 2 4R 1)
AL 24T T B AL, 43 A AT 2 27 v/
RERE W E T I R IATE I, o T Kl Eh
ISR ATLER, S A FF 2 i S R B 7 35 4 ik
LI, 1R R D IR AR T I AE bR FR s

1 MR5ERE

1.1 RXIEAR

AL H AR S G B T K i R
FARF L SEIR =R . Phak g B o m HE 1 R &)
AME [ME TR (0.4620.07) g, 78K (5.78+0.42) cm
(P>0.05)], TSI AT & TR KFHE R G T 7+
1 o B 77 W8 FH 28 25%0 « 5 E (25+0.5)C .
& EDO>5 mg/Lid £ W0 I8 5 R ARG K, B H E
PR 2 I, 3R 2h JE RIS K 50%. SEEGTT
Wh)a, SR W E R X R ZH £5 E 25%0(Control,
CK). & 2h Wi 2413 1%0(HS-test) MK £ W38 21
17%o(LS-test), % 4L/KIEHFFF25°C . Stk b M
18 12h J5, TARALE 3 B RS AR E T [ —
URAEE i e — MR FE LLTH B AR 22, DLtk RR 4
KRB LY EEY . R SR R R,
B T-80°C UKFH HIRAT
1.2 RNA $EEL. SCEEAGEFINF

K H RNAiso plus il G (CKIEEAELEDH IR
2 FDFRBUH IS RNA. SR FHMultiskan SkyHighfi
FUBR 43 6% 11 (Thermo Fisher Scientific, 35 [E )
/@RNAii I:IEll:l E‘J W}Té(ng/uL)*ﬂ é@E(Azéo/Azgo'fE), %IJ
F 1% B JIE BB o JC PR VKA 75 RNAL B o 1) 5 2 1k
K H] Bioanalyzer 2100 %%t (Agilent Technologies,
K E)IEAL RNA PR EEM e B . BUREZH2 pg
RNARE i, 5% NEBNext Ultra' RNA 3P il %15
7 & (New England Biolabs, 3¢ [ )44 & Fy> 3C /2
£ Mlumina “F & Fll A, M7 508N PE150 [Z i
PLIB BB (L) A R A
13 FHFREMER, TRFDEGsTH

i Perl JHIAS b BE R 46504, LR IR 5 22 FH T
BT IO R, BLRE 2 R BL TS5 441 Reads.
R Reads S &N LK T-5% [ Reads. X3
JEJ5 FT1S 201 Clean Data ) 51 & A £ #5 & S5 PRI
T4, ARG I8 I 1 R i EE R T 3005
RE<0.1%) AL EL P L5 (Clean Q30 bases rate,
Q30). HdlE AR & LS. KM Trinity BT
HEAT 2 2%%, XS B 2 K3 s A AT VRS, A5 i
AT HF U2 HE (Open reading frame, ORF) Tl #11
e, SR RPRMIETH R ik &, 7
DEGseq v1.18.0 BRI 2 2 ik TR AT 4y

Hr. XDEGs(Q<0.05 H.|log2 ratio |=1)#47 3L K]
AAK(Gene Ontology, GO) & 4 734t J2 i #R 2 (R 55 4
A 4H H #F 4 15 (Kyoto Encyclopedia of Genes and
Genomes, KEGG) i 22 18 % & £ 7 #7 .
14 SERRHEE PCR (RT-qPCR) 747

A DL B2-T Bk 2K [ (beta-2 microglobulin,
B2ME RN ZIEFE"Y) %10 /2 5 323k 3 H 1
RNA-Seq 45 RiHAT 1 30E. MR 4 SCEH )
Unigene /5%, F Primer Premier 5 #f4 ¥t 7 4%
51¥)(% 1). f# FHEppendorf Mastercycler ep real-
plex4(Eppendorf, 4% [E)FITB Green Premix Ex Tag '
I (T1li RNaseH Plus; TaKaRa, K& )R F| G X Z 7
RIRIEH ik BT B E, R 27
THE H R DR AR R IE 7K

2 4

2.1 KEDATEE mRNA UFEREMLAE

el = P 45 R R (R 2), CK. HS-test
CKAHI LS-test 2073 7| 3K1555510236. 5804014641
55840746 R 1L Bt (Raw reads). 1 I J5 49 7l 3k
1554453888(CK). 56489512(HS-test)F154407308
(LS-test)Clean reads. Q3043 71°497.80%(CK)-
95.88%(HS-test)F195.84%(LS-test), I K T95%, iiF
B T 58 . Trinity 304 45 2% v Joa = 0 e 080
Ja (R 3), FAEW154430 N AR, I KKE N
15866 bp, Fe/IMCEA201 bp, I 1234.69 bp,
N50 KJEH2318 bp. Frfdi s A7 41k — 4 5%
Wb FR 5 3R AF 7179440 BLBL K] 7% (Unigene), “F3 K B
49820.71 bp, N5091780 bp. H:H168.07%HIUni-
genes{E200—600 bp, 9.96% ] Unigenes7E600—
1000 bp, 1000—2000 bp 510.87%, 11.10%#] Uni-
genes{t:2000 bpLA L.
22 EEDhEEER

3R Unigene 045 B 70 HITEE A K
TSRO R (Pfam) B [ 5 7 41 £ 4 P2 (Swiss-
Prot). AETUAREAEHEND. HAZEWE QAL
R (KOG) FEPK AR (GO) K e Al 7R 5t 5
B] 5 L R T R4 T (KEGG )25 045 122 E ey #% .
R LIR(EK 4), 37.61%01] Unigenes?ENr ¥ 22 o
TR, 5 R 2 8 7 51 B4 e (N VEFE 1 Uni-
genes i 31.19%; 4781 ~UnigenesTEKEGG i &
HVERE, X & EE6.66%; 24450 Unigenes £ GOXE
FER AR R T VERE, & E34.06%. GOXHE i 7534
JH(E 1): A9t FE (Biological process). 4 ffl2H
% (Cellular component) 153 ¥ ) G&(Molecular func-
tion). #JH Trinotate Iy ERESE B, FitH1GO% H



539 (@ =5

P A o S0 PR KGR B 2 PR S 3R (R 5

997

R RIS N, ARG 2 GO% HE R4 it 45
o AR, 5 EORTS I R R O
Mo RE(72.75%) AV TT(50.84%) AR F2
(51.46%) A=Wt FE 8 15 (47.50% ) A5l 4 I3
(36.05%); 1E 50 F T Re S AR 12501 4 i) 72
SELINRE(63.10%) HEALTE T (34.67%) 14> T I BE
W (7.62%); 40 B 2H B30 40 v d 32 0 2R 8
AAHL(79.42%) AL 53 (79.26%) AL A
(63.61%)F1 5 (46.63%)

7 KOG ¥ FErh, 14428 MRV RER 1 25
MHARRBEHAE 2), HHPESHESHLHEI(T,
23.61%) 5 —IHAE TR, 13.54%)RF T H KK
KB, IR HEFE(K, 11.73%) BHIR IS 18400/ 1 5
JAHE 15y T FEAB (O, 8.18%)F4 i Py 3z i/ 4 AN &
iU, 6.10%).

H & 3 A&, HS-test vs. CK 3535752740 2
FEFRIKFEH (P<0.05), HH B3 FiH495 4N, B b

W 2245 4>; LS-test vs. CK 33545 3715 MR EE
HA, 1854 MEF FiA, 1861 NEZE T, Himh
JEZH b I R B AR T R R SR ARG i
R R R LA

JFF I %% 5% 40 7 S 3R B AN B e v 45 1 i
K 4), B EL A G = B % 2= R R IAH LR
it 1614, HS-test vs. CK 5 LS-test vs. CKf
12604 AH [7] 1) 22 7 3Rk FE IR, 7 1480 A~ 22 7 3 [A]
{XAE HS-test vs. CKIE & Kk, 2455 %7
R AE LS-test vs. CK iR H£ik .
23 ERFIEEFAM KEGG BEEAR

KEGG & — NN SHETFHIRE, 36 T 2410
REE R, HEAGEANEERE, BT THAEY
ARG E ST REA SE R, InAE o AR A
M. AVRETRGNER, EFRIEEEM
Pathway {ERE 2T B T E MR & 1090 7 LB M 4%
ok — R SR R T e, R I A R A 2R

#F 1 RT-qPCREFAEEKESIYIFF

Tab. 1

Primers used for RT-qPCR

JEHID Gene ID

FE[RJEREGene annotation

THACE
Amplificati on
efficiency (%)

5|9 F¥ 5| Primer (5'—3")

4 WH BRS-H % B AR Glutathione S-

AAATGACTCTGTACTGGGGCG

I TRINITY_DN21408_¢0_22 rancferase A-like (GST) CCCCTGGGGTTAATATCGAGC 9%
& T2 9715 K 7 Bel-2Apoptosis regulator  GTGAGGTACGTGCCGATGGT
2 TRINITY DN22446 c2 g4 g (Bcl.2) GGGCTGGGATGCTTTTGTG 103
3 TRINITY DNI8527 c0 g2 JEfiil2 #r§Fatty acid synthase (Fas) 858%%‘%&%2&%2&2%%&%‘*& 105
KA S P T A
4 TRINITY DN17925 ¢0 gl %gﬁ?ﬁﬁﬁiﬁfﬁﬁéﬁaﬁﬁvery O A 105
dehydrogenase (Vicad)
PRl P it S B E 1 23 T ¥ {7 o Pyruvate
Y& TTGCCCGTCATCTTCATCTG
5  TRINITY DN21693 cl_gl dehydrogenase E1 component subunit 95
alpha (Pdhal) GACATCCATACCATCCACCCT
YT 5 5 57 SRR Mt & Cytosolic malate TCTGCGACCACATGAGGGA
6 TRINITY_DN20289_¢6_gl  jepydrogenase (Mdhl) TCTGGACGGGGAAGGAGTAG 100
EL S R M A .
AT BRI A B3 (NAD+)Blsocitrate CTGGACCTGTTTGCCAATGTG
7 TRINITY_DN22605_cl_gl  gopydrogenase 3 (NAD+) beta (Idh3b)  AATCACACCGGTCACACTCTC 104
1 - 6- B 2 bt B Glucose-6- CATGCACGCAGTTCTGATAGC
8  TRINITY_DN18237 ¢c0_gl phosphate dehydrogenase (G6pd) GGGTGATCTGGCCAAGAAGAA 105
HERAZ I ATDNA R 515 5 8 A
GADD450. Growth arrest and DNA CTTTGGAAGGGACGTAGGCA
9 TRINITY DNI9718 ¢0 g6 4ymage-inducible protein GADD45 ~ AAACATCCGCAGAGGAGTGAA 104
alpha-like (Gadd45a)
HBEA B AL EFSuperoxide dismutase TCACATACTTCACGGGTTTCG
10 TRINITY_DNI12165_¢0_gl  (g0p) AGGGAAATGTTCAAGGTACTGC 102
11 TRINITY DN14235 cl gl P2-fFkE (Beta-2 microglobulin (B2M) Z}é%%%ﬁ%%i%i%ggiéﬁm 100
F2 KEIMNFHEFEHNSITLE
Tab. 2 Statistic summary of the sequencing data of H. kuda
i 5iGron TR 518 I A T T R S T K T 300
- P Raw reads number Clean reads number Clean bases number BRZEELL Q30 (%)
B4 CK 55510236 54453888 7749733968 97.80
B 3t 4L HS-test 58040146 56489512 8126998064 95.88
66 £ it ZELLS-test 55840746 54407308 7888244898 95.84
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x3 ERERGITE
Tab. 3 Statistics of assembly results

JFHIK HEE A AL PR 7R

Length (bp) Trinity Unigenes
200—600 74243 48867
600—1000 18364 7154
1000—2000 29552 7801
>2000 32271 7972
it Count 154430 71794
/M £ Min length 201 201
I KK B Max length 15866 15866
K fE Mean
length 1234.69 820.71
N50 2318 1780
N90 476 278

i NSORREFFF MR EI NS, 243 SR H BRI a4
TR B A FE50%I, B G — P B RN RANS O R/
NOOAEE Fr F AR BN/ HES, 245 B HK BERIRIEE i 42 75 51
EABEI0%IT, e Ja — AN P51 BRI BI NGO K/

Note: N50 means that the sequence is distributed from large
to small, and when the extension length just exceeds 50% of the
total length of the entire sequence, the size of the last sequence is
the size of N50. N90 means that the sequence is distributed from
large to small, and when the extension length just exceeds 90% of

the total length of the entire sequence, the size of the last sequence
is the size of N90

x4 BNMUREENERLER

Tab. 4 Summary of comments in each database

AETL R R Horte
Database Number of unigenes _ Percentage (%)
TR A B s ENT 26999 37.61
TABR T 5 B AN 22389 31.19
TOHR L 5 R R
;ifﬁg AL PR 4781 6.66
AR T 5B
Swiss-Prot 22277 31.03
R S A
Pam 12391 17.26
FE R AR IS FHEGO 24450 34.06
PR~F 354 E PECDD 15719 21.89
% AN Kt
%’%%2% LS 14428 20.1
IR % Total
unigenes 71794 100

BRBIREL —. KRG M ZE R RIEHENR
TEKEGGH #EAT & 4R LA I, % KEGGHHE 2 H (1)
Pathway {5 5N I # LA 36 24T & 46 20 Hr, IH A0
% IR R o R 3 B 2 1 Pathway(0<0. 05)!.
HooinZEREERRIEZ ERPHE, OfFH K
/N, R 22 S R FE R AZ 8 B v 1) AR I 3 R
E AR, HS-test vs. CK (1125 S £ IA L K
I AR 227 SABHA TR, Hrh B2 E S
% & 2 [ B A2 )& F(Steroid biosynthesis). LS-test
vs. CK )72 7 A BE PR & 48 31252 56 AU 1 15 1 2%,

Horh i 25 R KA BR H B4R (Proteasome) . 4
1L 1R 1k (Oxidative phosphorylation). [ B AE %)
& il (Steroid biosynthesis) & ¥7 15 IR {ifi ¥4 (Citrate
cycle)Z%.

R 5F1ER 6 43 7 WHS-test vs. CKAILS-test vs.
CKI 2 e Rk He R 'E B 43 B AT 20 4> KEGG 1R
W g, A S a RS R (SR R A
Yia R gAML HER. 2= BRAT5
IR F 2 LR . H B R, AR
B BEER Eh A R SR AT AN LRI T R 1
VA R R B YA ) RN e i AT
(WPPARTE T il . PUEIN LI E. NF-«xBf55iE
. HIF-115 5@ 8. TgAZE B 18 5 % X 2%
Y € R PASOX e A FR AR A5 ) 2 B s . (KR
JoibiE 2H ' AR AT B A AT I8 R 32 P I s AR R A R
REE R (WHER. 24K, BER. 6%
IR, WaEMK. REAAMRMAARNRY . B-WE R
R BRI MRS R seE M
TR S B (AN BE A& s AR
. PR . BARME . e AT REREAC . X
BEAR AW A A (LR A1) )R B 2 AR AH DG i i
(nEE A PUEINTIRE . PUIA MR AR &
(RN

RIER SHE 65 L@ HA RN, 455
FIr 25 156 P AH OC TR, i 48 0 3643 B Gt Hsp70
Hsp90. Sod. Bcl-2. Gadd450. Tcrf Tap2#H
Traf3%5 M KK, Fadsd6. Fas. Sqle
Cyp51. ElovI6FSlc27a6%5 N5 7 B AU AH G FE A,
Vicad. Pdhal. Mdhl. Idh3b. G6pdfSdhd* &t
mEARAHKEERE, XGlde. Atp6viel. Sms.
Fadh. Asl. Ass\FGlud %555 M A DL LB
75 e A S HE R £ N R A AR A

At dtimik t 7 Gstv Hsp70+ Hsp90.
Sod. Bcl-2. Gadd45a. Fadsd6. Fas. Sqle.
Cyp51. Elovi6. Pdhal. Mdhl. Idh3b. Go6pd-
Sms~ AsIFNGludl X £ 5 18 BB ik 2L A .
24 SERTOLEE PCR WIE

NS IERNA-Seqrar il 45 5 1) At 14, 8 i 25 b
SCHRILIE I 101 22 5 Ak FE K] (2 1) IEAT Bk
CL B2M 9N Z 3L K, SR AT RT-qPCR AHXT 2 B J7
2, KX B 22 S Rk FE R E AR 4 5 A BRAH )
KIEFEZR . ¥ RT-qPCR il 45 R 5 #4524 7 by
g WIAT AL, 4 R, 10 2 7 RIEF K1
RNA-seq FHXJ ik /K5 RT-qPCR I xf ikt
FA (K] SHNE 6), UEW] T Fe g AL B 45 SR )

FEE.
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3 iR

TR ER I th 25 P A8 Ak B 15 6 K PR S K 4T R
A A AR 26 05 T 77 A 4 B 2R S, AT R
Gy TR LS 43 7 2, LS R R P A7 A 4 T
72 R R AR — M B K B
HUARR BT, RSB IE 0, ANE £ A
BRI RERARUE. S BE AR RIS R K T2 7
[T € e 3 e B 1 S e 71 9] S
UL P 4R U 2 4 21 B B 2 B 2 AR AL
ZRI . AR TS AR, B SRR o K
T4y R S R AN R (6 (% SN 6): 7052
TARERR, TP R SR KRR b
). AR OB 2r 2L L) A4 ThRE (K
B> R BRI K IR 4R R A AR TR T v

RO, GEETRE oy R B AR AR (K
B4 RN AR R AR R AR T B AR
3.1 HEXMKEDREINEGENRM

£8P e 238 K S R A A A,
AR B BGTE A A AR AL A 1 %
IE™ ", FEARRT R R A R, & AR
REEZEESE HEETHERRNERNLYEE LR
(Wn26sE FABEAIEATPEG AT HBAL11A. BE).
R AR AT LA SR R T AR AR 1
EZPRAM N B, g A EE HE RN .
PR IE B [ (HSP) AT LAR B R 3T & SR S8 10
R, i 2 A R R KR R A A
FUR IR, A5 018 2 48 K B G AR AR P 7= A S A
51, DEGsH HLA I K] (W1Sod F Gst) FHAIR 78 £
FEIH (nHspTOF Hsp90) & 2 L iAIESLE 71X —

100
. - [ At B
=807 = walii] 70
2 ’ - = 7o
R g e g
xR §D 60 _ 5
%D 40 7 g
= .
20 H —
. Mo Haaas
6 8
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K1 GO gtk
Fig. 1 GO statistics histogram

1. Z0H it 72, 2. AR ML AE; 3. AT, 4. AW FE VAT, 5. BB N 6. ZANRADILRE; 7. KB I FE; 8. I A s AE A Rk
9. EAL; 10. 55 11, AW FEM IR, 12, @A IEE ST 13, AR RE M FUR %, 14, RIZ RGN 15. #30; 16. AEWENHE; 17. 241
PRIERE; 18, A2 19, A2 58; 20, A FE AR 21. 47 09; 22, A RE; 23, AR 10, 24. AIMUTREE; 25. AR EE; 26. LW 27. AN, 28. 41
W53 29. ANHLAR; 30. J%; 31. ANMAR B4 32. B 4Y; 33. SR AR AW, 34, AUMIE X 34 535 35. WELLE & sk, 36. 4T 8] [X 3k 4 4
37. Ml 22; 38, M 5> T 41 4E; 39. Jfil; 40. Tl oy, 41, ZHMIINEE I ; 42. A RANFE T AR AY; 43. %Ak 44, TR T 45, HABLHER; d6.
HAWALIE 5 47, BT 5050 48, FLAA; 49. 454 Thfg; 50, ALIETE; S1. - F RSN, 52. Fia R FiEtE; 53. 15 545 S iE e
54. BEIRTTFITEE; 55. 0 TIRRBL ARG VE; 56. 85K il 57. Be kR FiE v, A B4 A 58. MR FINEPE; 59. FL AL BTG 1k,
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1. cellular process; 2. metabolic process; 3. biological regulation; 4. regulation of biological process; 5. response to stimulus; 6. multicellular
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organismal process; 7. developmental process; 8. cellular component organization or biogenesis; 9. localization; 10. signaling; 11. positive
regulation of biological process; 12. establishment of localization; 13. negative regulation of biological process; 14. immune system process;
15. locomotion; 16. biological adhesion; 17. multi-organism process; 18. growth; 19. reproduction; 20. reproductive process; 21. behavior;
22. rhythmic process; 23. cell killing; 24. cell aggregation; 25. detoxification; 26. biological phase; 27. cell; 28. cell part; 29. organelle; 30.
membrane; 31. organelle part; 32. membrane part; 33. protein-containing complex; 34. extracellular region; 35. membrane-enclosed lumen;
36. extracellular region part; 37. cell junction; 38. supramolecular fiber; 39. synapse; 40. synapse part; 41. extracellular matrix; 42.
extracellular matrix component; 43. nucleoid; 44. virion; 45. other organism; 46. other organism part; 47. virion part; 48. symplast; 49.
binding; 50. catalytic activity; 51. molecular function regulator; 52. transporter activity; 53. signal transducer activity; 54. enzyme regulator
activity; 55. molecular transducer activity; 56. structural molecule activity; 57. transcription factor activity, protein binding; 58. receptor
regulator activity; 59. electron transfer activity; 60. channel regulator activity; 61. antioxidant activity; 62. chemorepellent activity; 63.
translation regulator activity; 64. chemoattractant activity; 65. protein tag; 66. metallochaperone activity; 67. morphogen activity
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EFFECTS OF SALINITY STRESS ON ANSCRIPTION AND EXPRESSION IN
JUVENILE HIPPOCAMPUS KUDA BLEEKER

ZHANG Wen-Xin, PAN Xia, SHEN Xi-Quan and XU Yong-Jian

(Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ministry of Education, School of Marine Sciences, Ningbo
University, Ningbo 315211, China)

Abstract: Salinity is an important environmental factor that affects the life cycle of aquatic organisms, including their
growth, development and reproduction. In fish, acute salinity changes cause a series of physiological responses. Hippo-
campus kuda is an important economic resource and can adapt to a wide range of salinity levels, while the juveniles are
highly sensitive to salinity stress, which may cause pathological signs or diseases by alleviating the immune roles and
then lead to mass mortality. The survival rate of cultivated H. kuda is low in China because of the toxic effects of sali-
nity stress on juvenile seahorse. To understand molecular mechanisms of its low survival rate, this study used high-
throughput sequencing technology to analyze differentially expressed genes (DEGs) in juvenile seahorse hepatopancrea-
tic tissues treated with normal-salinity water (CK, salinity=25%o), low-salinity water (LS-test, salinity=17%o), and high-
salinity water (HS-test, salinity=31%o) respectively for 12h. According to the result of RNA-Seq, a total of 71794 uni-
genes were produced among control group, high-salinity stress group and low-salinity stress group, and the sequence
N50 value was 1780 bp, with an average length of 820.71 bp. Compared with the control group, there were 2740 diffe-
rently expressed genes selected in high salinity group, of which 495 genes were up-regulated and 2245 were down-reg-
ulated. On the other hand, 3715 differently expressed genes were selected in low-salinity group, of which 1854 genes
were up-regulated and 1861 genes were down-regulated. Ten dysregulated DEGs (Gst, Bcl-2, Fas, Vicad, Pdhal,
Mdhl1, 1dh3b, G6pd, Gadd45a and SOD) were confirmed by qRT-PCR. According to the result of Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis, the DEGs were mainly related to metabolism and immune re-
sponses. With respect to metabolism, the low-salinity group had enhanced energy and amino acid metabolism, while
high-salinity group had reduced lipid metabolism related genes expression. Both high- and low-salinity group had en-
hanced immune metabolism pathways. Based on our results, we collected the lipid metabolism related genes (Fadsd6,
Fas, Sqle, Cyp51, Elovl6 and Slc27a6), amino acid metabolism related genes (Gldc, Atp6viel, Sms, Fadh, Asl, Assl
and Glud1), energy metabolism related genes (Vicad, Pdhal, Mdhl, Idh3b, G6pd and Sdhd) and immune related genes
(Gst, Hsp70, Hsp90, Sod, Bcl-2, Gadd45a, Tcrf, Tap2 and Traf3) of H. kuda as genetic indicators to identify the
stressor. This study will promote the discovery of the molecular mechanism of salt stress adaptation of aquatic orga-
nisms, and provides a reference for ambient salinity control in aquaculture.

Key words: Hippocampus kuda Bleeker; Salinity stress; Transcriptome; Differentially expressed genes
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