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Tab. 1 The morphology of juvenile crucian carp
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Treatment ~ Number mass (g) length (cm) (g /sz)
PR E High
intensity n=120 6.57+0.17 6.43+0.05 2.41£0.02
o T A5
Intermediate n=120 6.56+0.16 6.44+0.05 2.40+0.02
intensity
(EREH S Low
intensity n=120 6.57+0.16 6.43+0.05 2.43+0.02
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Fig. 1 Schematic of the angling device
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Fig. 2 Angling ratio of the juvenile crucian carp under the
conditions of different angling intensities and different angling
times
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Fig. 3 Individual angling interval of the juvenile crucian carp
under the conditions of different angling intensities and different
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Fig. 4 Relationships between angling ratio and individual angling
interval of the three angling intensity treatments in juvenile

crucian carp
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Fig. 5 Average angling serial number of the juvenile crucian carp
under the conditions of different angling intensities and different
angling times
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Fig. 7 Correlations between average angling serial number and its
coefficient variation in juvenile crucian carp
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mR A FRBR LA IR BEAH

0
-0.2
—0.4
—0.6
—0.8

SGR (%/d)

—-1.0 a

-1.2

8 N[ T SR L S 2 AR E R R AR
Fig. 8 Specific growth rate of the juvenile crucian carp under
different angling intensities
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EFFECT OF ANGLING INTENSITY ON THE VULNERABILITY TO ANGLING
AND GROWTH OF JUVENILE CRUCIAN CARP

CHEN Huan, HE Yan, LIU Xiao-Ling and ZENG Ling-Qing

(Laboratory of Evolutionary Physiology and behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences,
Chongging Normal University, Chongqing 401331, China)

Abstract: The vulnerability to angling refers to the stable difference in the probability of being caught among indivi-
duals within a fish species, which is easy to be affected by various environmental factors. Fish in nature are affected by
human angling activities, but the characteristics of the effects of different angling intensities on the vulnerability to
angling and growth of the Cyprinidae fishes are not clear. In order to investigate the effects of different angling intensi-
ties on the vulnerability to angling and growth performance of the Cyprinidae fishes in the Yangtze River, the juvenile
crucian carp (Carassius auratus) was used as the experimental object in this study under the condition of the laboratory
(26.9+£0.1)C, angling with different intensities for three treatment groups that have similar size and physical fitness,
three treatment groups [high frequency group (angling once a day), medium frequency group (angling once every two
days) and low frequency group (angling once every four days)]; three parallel groups were set up in each angling treat-
ment group, including 40 fishes in each parallel group. After 10 hours of angling in each repetition, the angling activi-
ties of the group were stopped. The angling time, angling serial number and electronic information of each fish success-
fully fished were recorded. The angling ratio, individual fish angling interval, average angling serial number and its
coefficient variation as well as the specific growth rate of fish during the experimental period (9d) were all calculated.
The results showed that the angling proportion of the three angling intensity groups decreased with the increase of
angling times, and the individual angling interval showed an increasing trend with angling time increased, which re-
sults in a negative correlation between angling proportion and individual angling interval. Except for the low intensity
treatment, the average angling serial number of both the high and medium angling intensity treatments showed a de-
creasing trend with the increase of the angling times, and the coefficient variation of the average angling serial number
of the two intensity treatments increased with the increase of the angling times. The average angling serial number of
the three treatment treatments was negatively correlated with its variation coefficient. The specific growth rates of the
three angling intensity treatments were all negative during the experiment, but there was no significant difference
among the three groups. Our results suggested that high intensity angling activities can reduce vulnerability to angling
of the juvenile crucian carp, and it can lead to obvious negative angling effect of individual growth, which shows that
high-intensity fishing activities may affect vulnerability to angling and evolutionary trajectory of other related pheno-
types of the wild fish populations.

Key words: Vulnerability to angling; Angling intensity; Angling proportion; Angling time; Ecological consequences



