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摘要: 稳定同位素技术可以用于消费者营养溯源，以确定多种营养来源对消费者营养的贡献比重。因此，稳

定同位素质量平衡混合模型已经是消费者营养溯源分析的必要方法之一。通常使用贝叶斯混合模型来估计

不同营养来源的贡献；此类模型提供了每个营养来源对消费者的贡献比例的概率分布特征。然而，混合模

型拟合结果的好坏，及其与实际生态学理论的匹配水平，是模型性能的重要评价内容。例如，模型在不能

很好地解析营养来源贡献时，仍将返回默认先验结果，给模型解释带来困难。为直接避免同位素构建消费

者营养溯源分析中的诸多技术问题，文章将综述在拟合和评估贝叶斯混合模型时遵循的最佳实践。因此，

文章基于实测的同位素数据集(蒙古鲌Culter mongolicus mongolicus同位素数据集)，通过识别消费者营养功

能类群特征、改变营养来源先验信息特征，构建系列贝叶斯模型；通过比较模型总体性能、实测值与

预测值差异，及先验信息和后验信息差异等多种模型性能评价方法，来描述模型性能评价的方法和过程。

通过这些方法的综合运用，将进一步提高消费者营养溯源准确性，为更深刻地认识食物网规律提供科学

支撑。
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稳定同位素技术是研究食物网生态学的重要

技术手段
[1—4]

。与直接观察摄食或胃肠含物分析等

技术手段相比, 稳定同位素技术能反映较长时间尺

度内消费者营养来源的整合特征
[1, 5]

。基于稳定同

位素质量平衡模型, 稳定同位素技术可用于消费者

营养溯源, 即确定多种营养来源对消费者的贡献比

重
[6—8]

。作为稳定同位素质量平衡模型的重要分

支, 贝叶斯混合模型考虑了营养来源的不确定性,
并允许纳入协变量, 所以近十多年来得到了广泛的

应用
[9]
。通常使用贝叶斯混合模型来估计不同营养

来源的贡献; 此类模型在贝叶斯混合模型输出了每

个营养来源对消费者贡献比例的概率分布特征
[10],

因此其假设之一就是营养来源对消费者贡献比重

满足(0, 100%)的条件。当引入某种营养来源进入

模型时, 就存在了消费者确实依赖了这种营养来源

的先验假设; 一个营养来源的贡献比例高, 必然会

降低其他营养来源的贡献比例, 导致营养来源贡献

比例不确定性增加
[11]

。因此, 评估贝叶斯混合模型

性能, 就需要评价贝叶斯混合模型拟合结果的优劣,
及其与生态学理论和研究背景的匹配程度。

本文基于实测同位素数据集(蒙古鲌Culter
mongolicus mongolicus同位素数据集), 通过识别消

费者营养功能类群特征、改变营养来源先验信息

特征, 构建系列贝叶斯模型; 通过比较模型总体性

能、实测值与预测值差异, 及先验信息和后验信息

差异等多种模型性能评价方法, 来描述模型性能评

价的方法和过程, 以此为应用稳定性同位素技术开

展消费者营养溯源研究, 提供模型性能评估体系。 

第 46 卷 第 3 期 水   生   生   物   学   报 Vol . 46 ,  No . 3
 

2022 年     3  月 ACTA HYDROBIOLOGICA SINICA Mar . ,   2 022 

 
 

收稿日期: 2020-10-18; 修订日期: 2021-04-06
基金项目: 国家重点研发计划(2018YFD0900904)；中国科学院国际合作重点项目(152342KYSB20190025)；深圳市技术创新计划技术

攻关项目(水2017006)资助 [Supported by the National Key Research and Development Program of China (2018YFD0900904);
the International Cooperation Project of the Chinese Academy of Sciences (152342KYSB20190025); Shenzhen Technology
Innovation Program: Technology Research Project (Water 2017006)]

作者简介: 祝孔豪(1998—)，男，硕士研究生；主要从事生态系统食物网研究。E-mail: zhukonghao@ihb.ac.cn
通信作者: 王维康(1980—)，男，高级工程师；主要从事水务建设与水生态修复工程设计与研究。E-mail: zhukonghao98@gmail.com　 徐军

(1978—)，男，研究员，博士生导师；主要从事水域生态学与同位素生态学研究。E-mail: xujun@ihb.ac.cn　*共同通信作者

http://dx.doi.org/10.7541/2022.2020.253


1    稳定同位素数据
 

1.1    鲌稳定同位素数据集

本研究中蒙古鲌数据引自李斌等
[12]

。实验材

料于2010年7月采自三峡库区腹地北岸支流小江。

同位素样品在西南大学地理科学学院地球化学与

同位素实验室(设备型号: Flash EA112HE DELT
plus XP)完成测试, 其分析精度δ13C<0.02‰, δ15N<
0.03‰。样品的收集、处理和保存方法如徐军等

[13]

所描述。 

1.2    种群营养功能群

采用K-means聚类对消费者稳定同位素值进行

聚类和种群营养功能群划分。K-means聚类属于无

监督学习聚类。基本原理是从n个数据对象任意选

择k个对象作为初始聚类中心点
[14]; 根据每个聚类

对象的中心点, 计算每个数据对象与这些中心点的

距离; 并根据最小距离重新对相应数据对象进行划

分; 重新计算每个聚类中心点, 反复循环至每个聚

类不再发生变化
[14, 15]

。

较为常见的聚类效果评估方法是总体类内误

差平方和(Total within sum of the squared errors)评
估(公式 1), 即肘部法则(Elbow Method)[14, 15]。

SSE=
KX

I=1

X
p2Ci

jp¡m ij2 (1)

式中, Ci是第i个簇; p是Ci中的样本点; mi是Ci的质

心(Ci中所有样本的均值); SSE是所有样本的聚类误

差
[14]

。随着聚类数k的增大, 总体类内误差平方和

减小, SSE随着分组增加而降低; 在达到某个临界点

时, SSE得到极大改善, 之后缓慢下降, 形成一个“肘
部”形状的关系; 这个临界点附近的聚类数k即可作

为聚类性能较好的分组
[14,15]

。

本研究分析表明, 在对消费者蒙古鲌的稳定同

位素值进行聚类过程中, 发现在k=4、5、6时, SSE
值形成的“手肘”形状关系; 但是分组的增加所获得

的SSE值下降的回报不高(图 1A)。结合湖泊生态学

基本理论和消费者种群内营养功能群的特点
[16—18],

本文设置了一个聚类k值的选择条件, 即某k值(k>1)
聚类所获得的SSE值与k=1时SSE值的比值小于

15%时, 则分组回报不足。基于这个聚类原则, 对
消费者蒙古鲌的稳定同位素值进行聚类, 最佳聚类

数选3(图 1A), 分别代表鱼类食性为主(Piscivorous)、浮

游动物食性为主(Planktivorous)和底栖动物食性为

主(Benthivorous)等食物网功能类型(图 1B)。种群

营养功能群的识别, 既有助于减小消费者同位素变

异所带来的不确定, 又有助于理解消费者在食物网

的功能
[19, 20]

。 

1.3    营养富集因子与源矫正

构建贝叶斯混合模型的一个重要前提条件是

消费者与营养来源间的同位素的差异
[21, 22]

。这种

差异由消化和代谢过程中同位素分馏引起, 被称为

营养富集因子(Trophic enrichment factor, TEF, Δ),
其定义为Δ = δtissue–δdiet(δ代表样品的同位素比值与

标准物质的同位素比值之间的相对差异)[23]。由于

TEF受到从生理到营养来源的多种因素影响, 实际

研究中多采用营养级富集因子的统计平均值(或多

个统计平均值)进行分析, 以获得最接近富集因子

真实值的近似值, 从而更好地估算该种类的食源组

成
[21, 22]

。例如, δ15N在相邻两个营养级间所产生的

富集因子(Δδ15N)在3‰—5‰[24], 而δ13C在相邻营养

级间富集因子(Δδ13C)为0.4‰—1.0‰[25]
。

在本研究中, 消费者蒙古鲌是典型的肉食性消

费者, 本研究使用Δδ15N=(3.4±0.99)‰和Δδ13C=
(0.39±1.14)‰对营养来源的稳定碳氮同位素进行矫

正, 即Δ+δdiet
[21, 22]

。结合蒙古鲌食性对食物来源进

行整合, 形成四类营养来源用于模型构建, 包括浮

游动物、底栖动物、浮游鱼类和底栖鱼类(图 2, 食
物来源δ值数据来自李斌等

[12]
的实测数据)。TEF的

不确定性(标准误差), 通过统计平方公差法(Root-
Sum-Squares Error), 整合到食物来源同位素的误差

中(公式2), 用来反映数据误差的整体特征
[26]
。

R SSE=

vuut nX
i=1

¾2 (2)

式中, σ为标准差。

同位素混合空间中(图 2)营养来源和消费者同
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图 1   种群内营养功能群的确定

Fig. 1   Within-population trophic functional groups
A. K-means聚类与总体类内误差平方和百分比特征; B. 鱼类食

性为主、浮游动物食性为主和底栖动物食性为主的3个功能类型

A. K-means cluster and percentage of total within sum of the
squared errors; B. Three trophic functional groups, including
piscivorous, planktivorous, and benthivorous
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位素之间的共线性, 及不同营养来源之间的差异水

平等情况, 可会导致统计上多种营养来源贡献的等

效解决方案, 也需尽量避免
[27]

。结合多元方差分析

(Multivariate analysis of variance, MANOVA), 结果

表明4种潜在食物来源表现出一种或一种以上的稳

定同位素显著差异(P<0.05), 且共线性特征不显著

(图 2), 适合进一步分析消费者的食物来源。 

1.4    建模数据质量检验

TEF的选择及源矫正的合理性, 对稳定同位素

质量平衡混合模型的结果影响很大
[21]

。混合模型

的基本假设之一就是, 消费者的稳定同位素必须属

于多种食物来源稳定同位素所定义的同位素混合

空间
[9]
。特别需要指出的是, 本研究案例中的贝叶

斯混合模型, 其数学性质是即使数据不符合稳定同

位素混合的基本假设, 也会获得方程的解
[9, 10]

。因

此, 必须检查消费者稳定性同位素数据是否绝大多

数落入多种营养来源确定的同位素混合空间中
[28]

。

尽管通过营养富集因子校正后的稳定同位素

混合空间(图 2), 可以初步进行判断; 但直观观察很

难准确确定哪些样本属于混合多边形。由于贝叶

斯建模包含不确定性(本例中为均值和标准偏差),
需要借助一定的统计学方法来判断哪些消费者在

模型求解过程中产生错误的风险较高。本研究采

取混合多边形迭代模拟的方法来判别数据落入混

合多边形的可能性。基本方法是, 基于TEF校正后

的各种营养来源的同位素均值和标准偏差, 迭代生

成10000次稳定同位素混合多边形; 进一步计算消

费者稳定同位素落入这些混合多边形的频次; 消费

者稳定同位素落在>0.05可能性区域, 为数据质量

符合建模需要(图 3A、3B和3C)。
如前文所述, 同位素混合空间中营养来源和消

费者之间的共线性, 可为营养来源贡献提供多种在

统计上等效的解决方案
[9, 10]

。引起这种不确定性的

主要特点是, 当消费者的稳定同位素处于由营养来

源所构成的同位素空间中心区域时, 模型无法确定

营养来源比例。因此, 当稳定同位素混合空间质心

区域消费者样本过多时, 共线性增加, 稳定同位素

混合空间模型求解不会收敛或预测值与观测值不

能较好匹配
[29]

。本研究采取混合多边形迭代模拟

的方法来判别数据质量。基本方法是, 基于TEF
校正后的各种营养来源的同位素均值和标准偏差,
迭代生成10000次高风险混合同位素空间(以质心

为中心的50%不规则多边形面积内)[28, 29], 进一步计

算消费者同位素落入风险高的混合空间的次数; 通
过计算落入混合空间次数与迭代次数的比值, 基于

统计学频次计算落入高风险稳定同位素混合空间

的概率, 来检验数据建模的质量; 消费者稳定同位

素落在<0.95可能性区域, 为数据质量符合建模需

要(图 3D、3E和3F)[28, 29]。
由图 3所示(等值线颜色深浅显示了概率轮廓),

本研究数据总体质量较高。图 3A、3B和3C则显

示了消费者蒙古鲌同位素值的变化将如何影响营

养来源混合模型合理求解的概率
[28]

。95%概率轮

廓内的消费者蒙古鲌样品可用于混合模型使用, 也
就是说其中一个样本(16号个体)位于营养来源之

外, 因此模型解释程度低, 在后续建模分析中予以

剔除。图 3D、3E和3F则显示了消费者蒙古鲌同位

素值的变化将如何影响营养来源混合模型低估风

险的概率
[29]

。消费者蒙古鲌样品落入风险区的概

率总体低于50%, 未出现高于95%概率的样本。

需要强调的是, 如果在上述统计方法检验过程

中, 发现较多的样本不适用于建模, 则必须考虑研

究假设中是否存在1)测量过程的错误、和/或2)消
费者的重要食物来源被忽略、和/或3)营养富集因

子使用不合理等问题。 

2    贝叶斯质量平衡混合模型
 

2.1    先验信息

“从先验信息中获益(Profiting from prior in-
formation)”是贝叶斯建模中的一个常见想法

[30, 31]
。

因此, 先验信息的确定是稳定性同位素质量平衡混

合模型的一个重要条件。为特定研究设计建立合

理的信息先验是建立贝叶斯模型的最佳方案。因

此, 在开展研究前, 需要投入大量的时间和精力进
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图 2   营养富集因子校正后的稳定同位素混合空间

Fig. 2   Trophic enrichment factor corrected isospace
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行数据收集和分析, 了解哪些数据满足了前期的假

定条件, 提升进一步建模分析的准确性
[32]

。当观测

样本量或代表性有限时, 贝叶斯模型将观测值与先

验信息相结合, 提升模型预测的准确性。在消费者

营养溯源研究中, 尽管使用胃肠含物来评估营养来

源具有一定的局限性
[33], 但为同位素技术的研究提

供了较好的先验信息, 可以提高混合模型预测的准

确性
[34]

。此外, 环境中潜在食物来源丰度、生物量

和消费者摄食行为习性等, 均可作为重要的先验信

息, 以提高混合模型预测的准确性
[34]
。

本研究展示了3个营养来源贡献的先验信息,
包括默认先验(Uninformative)、信息先验(Informa-
tive)和高信息先验(Informative with SD; 图 4)。针

对4种营养来源, 包括浮游动物、底栖动物、浮游

鱼类和底栖鱼类, 默认先验的营养来源贡献由均值

为零、标准偏差为1的正态分布混合确定, 并进行

中心化对数比转换(Centralized logarithm ratio trans-
formation)[35], 从而产生均值为0.25且营养来源边际

贡献大的分布特征(SD≈0.2)。信息先验是基于蒙古

鲌的食性分析数据, 4种来源质量比例均值分别为

16.7%、28.3%、20.6%和34.4%, 依据上述方法获

得营养来源边际贡献水平较大的分布特征(SD≈0.2)。
高信息先验的情景则是在此基础上, 结合食性数据

变化的标准偏差特点, 在均值不变的条件下, 对所

有营养来源使用了SD ≈ 0.06的标准偏差(图 4)。在

进一步建模分析中, 本研究采用高信息先验的情景
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图 3    混合多边形迭代模拟

Fig. 3    Mixing polygon simulation
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来分析蒙古鲌数据集。 

2.2    模型构建

本研究使用R包simmr来拟合所有的同位素贝

叶斯混合模型(iter=50000, burn=1000, thin=10, n.
cha in=4) ,  并使用 JAGS(Jus t  Ano the r  Gibbs
Sampler)从后验分布中提取样本。通过马氏链

(Markov chain, MCMC)轨迹图检验法、Geweke
检验法和Gelman检验法等多种方法诊断了马氏链

的收敛性, 进一步估计有关参数或者进行其他统计

推断。模型结果表明(表 1), 蒙古鲌鱼食性功能群

的浮游饵料鱼的比重最高, 其次为底栖饵料鱼; 蒙
古鲌浮游动物食性功能群的浮游动物和浮游饵料

鱼的比重高; 蒙古鲌底栖动物食性功能群的底栖动

物能量贡献比例最高, 结果整体符合预期。 

3    模型性能评价
 

3.1    整体性能

在模型选择阶段, 常见指标为偏差信息量准则

(Deviance information criterion, DIC)。DIC是等级

模型化的赤池信息量准则(Akaike information cri-
terion, AIC), 被广泛应用于由马尔可夫链蒙特卡洛

(MCMC)模拟出的后验分布的贝叶斯模型选择问

题
[36]

。和赤池信息量准则一样, 偏差信息量准则是

随样本容量增加的渐近近似, 只应用于后验分布呈

多元正态分布的情况
[11, 37]

。一般而言, 偏差信息量

准则的值越小, 模型越好。这一准则的优点是它很

容易从马尔可夫链蒙特卡洛(MCMC)模拟产生的样

本中计算出来
[36]

。在一组供选择的模型中, 如果观

测值样本数不同的时候, 可使用校准的DIC(DICcor)
进行比较(公式3)[11, 37], 公式如下:

DICcor=
n
N
¹D+pD (3)

式中, N表示每个模型的样本数, n为比较的模型中

样本数最低的数据。

例如, 本研究中蒙古鲌鱼食性功能群、浮游动

物食性功能群和底栖动物食性功能群的3个模型的

样本数分别为11、10和7; 因此, 计算DICcor的时候,
取值n=7。由此模型整体性能评价结果表明(表 2),
蒙古鲌鱼食性功能群、浮游动物食性功能群和底

栖动物食性功能群的拟合总体较好(90% Coverage
均为100%, 90% Coverage为观测值落入90%后验分

布中的比例)。但3个模型比较看, 鱼食性功能群的

拟合模型性能相对较差(DIC和DICcor最高)。需要

特别指出的, 在一组供选择的模型中, 最优化的模

型的选择都是具有相对性的, 并不是说所选择的模

型就一定足够精确。 

3.2    预测值与观测值

针对消费者营养来源研究, 模型性能核心是指

营养来源比例在不同方法下的预测效果, 但是实践

中很难获得消费者营养来源贡献的合理观测值。

因此, 通过评估消费者同位素的观测值(y)与预测值
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图 4   先验信息的不同情景

Fig. 4   Priori information of three scenarios

表 1   模型结果

Tab. 1   Model results

营养聚类
Trophic
cluster

营养来源
Sources

平均值
Mean

标准差
SD 2.50% 50% 97.50%

鱼类食性
Piscivorous

Zooplankton 0.237 0.038 0.168 0.235 0.314
Zoobenthos 0.243 0.038 0.173 0.242 0.322

Plankton prey
fishes

0.268 0.041 0.192 0.267 0.352

Benthic prey
fishes

0.252 0.039 0.182 0.250 0.335

浮游动物食
性
Planktivorous

Zooplankton 0.274 0.039 0.200 0.273 0.355
Zoobenthos 0.244 0.035 0.178 0.243 0.315

Plankton prey
fishes

0.271 0.041 0.195 0.270 0.355

Benthic prey
fishes

0.211 0.031 0.155 0.210 0.277

底栖动物食
性
Benthivorous

Zooplankton 0.242 0.038 0.173 0.240 0.322
Zoobenthos 0.273 0.044 0.193 0.271 0.363

Plankton prey
fishes

0.233 0.037 0.167 0.231 0.311

Benthic prey
fishes

0.251 0.037 0.182 0.250 0.329

表 2   模型整体性能评价

Tab. 2   Model performance

营养聚类
Trophic cluster

偏差信息
量准则
DIC

校准偏差
信息量准
则DICcor

参数有效
数量pD

90%
Coverage

模型样本
数N

鱼类食性
Piscivorous 80.12 49.18 2.83 100 11

浮游动物食性
Planktivorous 44.43 28.39 3.87 100 10

底栖动物食性
Benthivorous 44.43 41.44 2.99 100 7
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ŷ
ŷ

( )之间的匹配程度, 可以间接评估不同食物来源比

例的预测效果
[41]

。消费者稳定同位素预测值( )可
通过模型中各种营养来源贡献比例和营养来源的

稳定同位素来计算获得(公式4)[42]:

by= kX
n=1

f n±X (4)

式中, n表示消费者使用的第n种食物来源, k是食物

来源的数量(本研究中k=4), f代表通过食物来源分

配方法预测的食物来源对消费者的比例贡献。

δX表示食物来源中测得的同位素组成。

结合模型的特点, 通常计算一个或多个基于预

测值与测量值的指标来进行评价(表 3)。例如, 均
方根误差(RMSE), 总结了测得值和预测值之间的

平均差异 ,  用来评估预测值的准确程度; 较低的

RMSE值表明该模型具有较小的误差和更准确的预

测。预测优度统计数据(G)也用于衡量模型的有效

性。G值为1表示理想的预测。G值越接近1, 模型

的可靠性越高。G值为负表示该模型不太可靠。

衡量模型的拟合程度(模型质量好坏), 没有固

定的标准。例如, MAE和RMSE一样, 衡量的是真

实值与预测值的偏离的绝对大小情况, 需要结合真

实值的量纲才能判断差异; 而MAPE衡量的是偏离

的相对大小(即百分率)。相对来说, MAE和MAPE
不容易受极端值的影响; 而MSE和RMSE采用误差

的平方, 会放大预测误差, 所以对于离群数据更敏

感。MAPE使用百分率来衡量偏离的大小, 容易理

解和解读。而MAE/RMSE需要结合真实值的量纲

才能判断差异。

本研究的模型评价结果表明(表 4), 蒙古鲌鱼

食性功能群、浮游动物食性功能群和底栖动物食

性功能群的拟合总体较好(G>0.8), 但3个模型比较

表 3    基于预测值与测量值的模型评价方法

Tab. 3    Evaluation methods for the difference between model predicts and observations.

名称Name 全称Full name 缩写
Abbreviation 公式Formula 性质Property 含义Meaning 参考文献

Reference

最小预测误差 Minimum error Emin Emin=m in (ŷi¡yi) (–∞,+∞) 预测值与真实值之
间的最小偏差 [38]

最大预测误差 Maximum error Emax Emax=m ax (ŷi¡yi) (–∞,+∞) 预测值与真实值之
间的最大偏差 [38]

均方误差 Mean squared
error MSE MSE=

1
n

nX
i=1
(byi ¡ yi)

2 [0,+∞)

衡量的是预测值与
真实值之间的偏
差，并且对数据中
的异常值较为敏
感。预测值与真实
值完全吻合时等于
0；误差越大，该
值越大

[39]

根均方误差 Root mean
square error RMSE RMSE=

vuut 1
n

nX
i=1
(ŷi¡yi)

2 [0,+∞)
同上。数量级上比
MSE较直观，与观
测值一致

[39]

标准根均方误
差

Normalized
root mean
square error

NRMSE
NRMSE=

vuut 1
n

nX
i=1
(byi¡yi)

2

m ax (yi)¡m in (yi)

[0,1]
同上。可用于比较
不同尺度观测值直
接对模型预测的效
果

[39]

平均绝对误差 Mean absolute
error MAE MAE=

1
n

nX
i=1

jbyi¡yij [0,+∞)
同上。更好地反映
预测值误差的实际
情况

[39]

平均绝对百分
比误差

Mean absolute
percentage

error
MAPE MAPE=

100
n

nX
i=1

¯̄̄̄ byi¡yi

yi

¯̄̄̄
[0,+∞)

预测值与真实值完
全吻合时等于0%，
大于100%则表示劣
质模型分母部分为
零时，不可用

[39]

对称平均绝对
百分比误差

Symmetric
mean absolute
percentage

error
SMAPE SMAPE=

100
n

nX
i=1

jbyi¡yij
(jbyij¡jyij) =2

[0,+∞) 同上 [39]

预测优度 Goodness of
prediction G G=1¡

" nX
i=1
(byi¡yi)

2 =

nX
i=1
(yi¡y)2

#
[0,1]

G值为1表示理想的
预测。G值越接近
1，模型的可靠性
越高。G值为负表
示该模型不太可靠

[40]

R R R R=
±xX

j=1

nX
i=1

µbyi;j

yi;j
¡1
¶2

[0,+∞)
预测值与真实值完
全吻合时等于0；
误差越大，该值越
大

[40]
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看, 鱼食性功能群的拟合模型性能相对较差。不管

用哪个指标, 评估模型的好坏都不能够脱离具体的

应用场景和具体的数据集。单纯地评判哪个模型

好坏, 是基本上没有意义的。 

3.3    先验信息与后验信息

贝叶斯混合模型的主要统计数据是消费者营

养来源的概率分布, 而不是消费者同位素值的预测,
因此评估混合模型对消费者营养来源贡献估计的

后验信息及其受先验信息的影响(图 5)。后验信息

与先验信息的本质是营养贡献量的概率分布, 因此

可通过信息理论的相关概念和方法进行评价(表 5)。
信息量用来度量一个信息的多少, 而信息熵

(Shannon Entropy)则用来描述一个来源信息的不确

定度, 也是信息来源的信息量期望
[44]

。基于信息理

论的方法, 可以衡量不同营养来源概率分布之间的

先验信息与后验信息的异同。进一步可评估营养

来源数据的改变、消费者功能群的改变和营养来

源强度的改变等对消费者营养来源信息确定和解

释的影响。例如, 相对熵可以衡量先验信息与后验

信息之间的距离, 当先验信息与后验信息分布相同

时, 它们的相对熵为零
[43]

。在混合模型中, 先验信

息通常较后验信息丰富, 因此当计算KL散度(Kull-
back-Leibler divergence), 可获得比最大熵更高的信

息增益, 即后验与先验信息相差很大时, 就会出现

较高的值
[43], 而信息熵则代表了信息增益的有限上

界。KL散度(信息增益)增高由后验信息与先验信

息不同的均值和置信区间的差异变大决定(后验信

息不支持先验信息或者后验信息强烈支持先验信

息但置信区间较窄), 因此需结合分布信息图一同

解释(图 5)。
本研究依据主要信息理论度量与统计方法, 评

估了鲌贝叶斯混合模型的先验信息和后验信息结

果(表 6), 先验信息和后验信息不同的信息熵值、

不为0的相对熵值及较大的交叉熵值表明鲌贝叶斯

混合模型的先验信息和后验信息存在一定程度差

异。首先, 估计每个信息源的边际(Marginal)贡献

所占的比例, 以反映文献中混合模型是如何解释的

(例如大多数混合模型程序的输出包括边际均值和

可信度区间)。营养来源1%水平贡献信息测量应在

0.01的离散区间内计算。其次, 通过所有来源贡献

的联合后验分布计算的, 说明了关于来源相互间有

条件依赖的信息增益, 如食性组成权衡, 及边际贡

献的变化。我们通过比较食性组成贡献的先验分

布和后验分布的样本来计算总体测量值, 并使用

The isometric logratio transformation等轴测对数比

进行转换
[48]

。等轴测对数比率将比例转换为变量,
这些变量根据多元正态分布近似分布, 使我们能够

使用2个多元正态分布散度的分析方程来计算信息

增益。从概念上来说, 我们可以把等轴测对数比变

换看作是将食性组成比例延伸到一个可能有无限

边界的坐标空间。等长对数比变换意味着KL散度

可以无限增加, 食性组成比例的变化非常微小。因

此, 我们在log2尺度上用KL散度来表示信息增益
[11, 37]

。

此外, 度量2个概率分布之间的距离, 还有一些

其他通用的散度指标可供参考(表 7)。例如Hellinger
distance[49]可量化先验分布和后验分布之间差异。

如果先验分布和后验分布在其参数空间中具有相

同的密度, 则为零。如果一个分布在任何地方都是
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图 5   消费者不同营养功能群营养来源贡献的先验信息与后验

信息

Fig. 5   Priori information and posteriori information of trophic
groups

表 4    模型预测值与观测值差异评价

Tab. 4    Evaluation of the difference between model predicts and observations

营养聚类
Trophic cluster

最大预测误
差Emax

最小预测误
差

Emin

均方误差
MSE

根均方误差
RMSE

标准根均方
误差

NRMSE

平均绝对误
差

MAE

平均绝对百
分比误差
MAPE

对称平均绝
对百分比误
差SMAPE

预测优度
Goodness-
of-fit

R

鱼类食性
Piscivorous 1.195 –3.089 2.16 1.47 0.036 1.273 127.3 8.216 0.994 0.198

浮游动物食性
Planktivorous 1.603 –0.492 0.547 0.74 0.019 0.594 59.4 3.377 0.998 0.043

底栖动物食性
Benthivorous 1.602 –2.261 0.938 0.969 0.026 0.732 73.2 4.513 0.997 0.055
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零密度, 而另一个分布是正密度, 那么Hellinger dis-
tance为1[45]。 

4    结论

本文综述了在拟合和评估贝叶斯混合模型时

遵循的最佳实践(图 6), 及如何直接避免同位素构

建消费者营养溯源分析中的诸多技术问题
[9]
。种群

营养功能群的识别, 有助于减小消费者同位素变异

所带来的不确定性
[19, 20]; 营养来源矫正可以避免营

养来源和消费者同位素之间的共线性, 及不同营养

来源之间的差异水平等情况
[27]; 数据质量检验可以

帮助剔除异常数据、提高数据总体质量、检验数

据质量是否符合建模需要
[28, 29]

。动态的生态系统

与消费者相对快速的能量需求调整, 可强烈地影响

食物网结构与功能
[50]

。因此, 在开展食物网研究前,
需要投入大量的时间和精力进行数据收集和分析,

了解野外调查过程中哪些数据满足了前期的假定

条件, 以确保建模分析的准确性
[32]

。在尝试数据建

模之前, 必须考虑环境中潜在食物来源的丰度、生

物量、消费者的摄食行为习性、胃肠含物等重要

的先验信息
[33]

。完整重现模型选择和模型评价的

过程, 是建模、训练、验证、评价的必要条件。模

型选择是根据一组不同复杂度的模型表现, 从中挑

选最好的模型; 模型评价则是在选择模型后, 评价

其预测误差
[11, 37]

。根据具体研究, 在实践过程中,
评价指标多种多样, 且分别刻画了相对“真实模型”
的信息损失。由于真实模型的未知性, 这些评价仅

反应现有模型构建过程中相对较好的性能, 所以具

体问题仍需具体分析。

通过侧重于模型预测摄食者同位素值能力的

评估方法, 可以判断模型的拟合质量。此外, 鉴于

贝叶斯模型的特点, 即如果先验信息误差较低, 则

表 5    主要信息理论度量与统计

Tab. 5    The important information theory measures and statistics

名称Name 全称Full
Name

缩写
Abbrevaition 公式Formula 含义Meaning 参考文献

Reference
信息熵 Shannon

Entropy
或Information

Entropy

H(x) H(x )=¡
X

x
p(x )logp(x )

=¡
nX

i=1
p (x i) logp (x i)

是一个事件总的信息量，是每一种可
能的情况的信息量乘以它们发生的概
率，即所有可能发生事件所带来的信
息量的期望

[43, 44]

联合熵 Joint Entropy H(X, Y) H(X ; Y)=¡
X
x ;y

p(x ; y)logp(x ; y)

=¡
nX

i=1

mX
j=1

p (x i; yi) logp (x i; yj)

同上，拓展至多维分布。H(X)  和H(Y)
的并集是联合熵 H(X, Y)

[43]

条件熵 Conditional
Entropy

H(Y|X) H (YjX )=H(X ; Y)¡H(X ) 描述X和Y所需的信息是描述X自己所需
的信息，加上给定X的条件下具体化
Y所需的额外信息

[43]

互信息 Mutual
Information

I(X, Y) I(X ; Y)=H(X )¡H(X jY)
=H(Y)¡H(YjX )

=H(X )+H(Y)¡H(YjX )
=H(X ; Y)¡H(X jY)¡H(YjX )

亦成为转移信息（Transinformation），
是两个随机变量间相互依赖性的量度。
H(X) 和 H(Y) 的交集是互信息 I(X, Y)

[43]

交叉熵 Cross Entropy Hcross H cross(p; q)=
X

x
p(x )log

1
q(x )

=¡
P

x p(x )logq(x )

交叉熵用来衡量在给定X下，使用Y策
略消除系统的不确定性所需要付出成
本的大小。值越小，两个概率分布就
越接近

[43]

相对熵-
KL 散度

Kullback–
Leibler

divergence，
KLD

DKL DKL(p k q)=
X

x
p(x )log

p(x )
q(x )

=E p(x )log
p(x )
q(x )

DKL(p k q)=H cross(p; q)¡H(p)

衡量两个概率分布之间的差异 “距
离”，反映了用分布q的最佳信息传递
方式来传达分布p，比用分布p自己的
最佳信息传递方式来传达分布p，平均
多耗费的信息长度。KL散度是用于衡
量分布之间的差异程度的，又称信息
增益（Information gain）

[43]

相对熵
–JS散度

Jensen-
Shannon
divergence

DJS D JS(p k q)=
1
2

DK L

µ
pk p+q

2

¶
+

1
2

DK L

µ
q k p+q

2

¶
JSD(P k Q) = JSD(Q k P)
JSD = 0 P = Q

KL  散度的缺点是它不是距离、不对
称。因此引入JS散度的概念，是 KL 散
度的变形。JS散度是对称且非负的，

。
, if and only if 

[43]

相对熵
–GJS散度

Generalized
Jensen-
Shannon
Divergence

DGJS gJSD 1;¢¢¢; n (P1; ¢ ¢ ¢ ;Pn)=

H

Ã nX
i=1

i ¤ Pi

!
¡

nX
i=1

i ¤ H (Pi)

同上，拓展至多维分布 [43]
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表 7    概率分布相似度评价的几种距离法

Tab. 7    Some distance methods to evaluate similarity of probabilistic distribution

全称Full
Name

缩写
Abbreviation 公式Formula 含义Meaning 参考文献

Reference
海灵格距离
Hellinger
distance

HD H 2(P; Q)=
1
2

Z
(
p

dP¡
p

dQ )2 海灵格距离计算先验和后验之间
的无单位差。这样做，它获得了
一些可解释性，因为它的最大值
是1。海灵格距离对于确定准确
描述摄食者食性组成所需的样本
量非常有用

[45]

最大平均差
异
Maximum
mean
discrepancy

MMD MMD[F; X ; Y] ="
1

m 2

mX
i;j=1

k (x i; x j)¡
2

m n

m ;nX
i;j=1

k (x i; yj)+
1

n2

nX
i;j=1

k (yi; yj)

# 1
2

基于两个分布的样本，通过寻找
在样本空间上的映射函数K，求
不同分布的样本在K上的函数值
的均值，通过把两个均值作差可
以得到两个分布对应于K的mean
discrepancy。寻找一个K使得这
个mean discrepancy有最大值，就
得到了MMD。最后取MMD作为
检验统计量（test  statistic），从
而判断两个分布是否相同。如果
这个值足够小，就认为两个分布
相同，否则就认为它们不相同。
更加简单的理解就是：求两堆数
据在高维空间中的均值的距离

[46]

瓦瑟斯坦距
离
Wasserstein
distance

WD
WORK(P; Q; F)=

mX
i=1

nX
j=1

dij f ij

衡量了把数据从分布p“移动成”
分布q时所需要移动的平均距离
的最小值，不仅给出了距离的度
量，而且给出如何把一个分布变
换为另一分布的转移方案

[47]

表 6    先验信息与后验信息的信息理论统计结果

Tab. 6    The important information theory measures and statistics

信息理论
Infomation theory

营养来源
Source

先验信息
Prior. information

鱼类食性
Piscivorous

浮游动物食性
Planktivorous

底栖动物食性
Benthivorous

信息熵 Shannon’s Entropy Zooplankton 12.86205362 14.2564454 14.2564497 14.2563905
Zoobenthos 12.85236519 14.2560339 14.2561267 14.2560087

Plankton prey fishes 12.84968762 14.2562204 14.2562049 14.2562201

Benthic prey fishes 12.85681723 14.2560032 14.2559697 14.2560624

相对熵- KL 散度 Kullback-Leibler Divergence Zooplankton — –0.1795993 –0.1789568 –0.1786544
Zoobenthos — –0.1642057 –0.1642421 –0.1639883

Plankton prey fishes — –0.1654721 –0.1650742 –0.1654557

Benthic prey fishes — –0.1682989 –0.1680717 –0.1677031

相对熵 –JS散度 Jensen-Shannon Divergence Zooplankton — 0.1387041 0.1391457 0.1390174
Zoobenthos — 0.1409801 0.1410425 0.1412026

Plankton prey fishes — 0.1412871 0.141212 0.1412597

Benthic prey fishes — 0.1400291 0.140179 0.1399777

相对熵 –GJS散度 Generalized Jensen-Shannon
Divergence

Zooplankton — 0.1387041 0.1391457 0.1390174
Zoobenthos — 0.1409801 0.1410425 0.1412026

Plankton prey fishes — 0.1412871 0.141212 0.1412597

Benthic prey fishes — 0.1400291 0.140179 0.1399777

交叉熵 Cross Entropy Zooplankton — 12.6824543 12.6830969 12.6833992
Zoobenthos — 12.6881595 12.6881231 12.6883769

Plankton prey fishes — 12.6842155 12.6846134 12.6842319

Benthic prey fishes — 12.6885184 12.6887455 12.6891141

互信息 Mutual Information Zooplankton — 12.8620536 12.8620536 12.8620536
Zoobenthos — 12.8523652 12.8523652 12.8523652

Plankton prey fishes — 12.8496876 12.8496876 12.8496876

Benthic prey fishes — 12.8568172 12.8568172 12.8568172

3 期 祝孔豪等: 稳定同位素质量平衡混合模型的性能评估 435



信息混合模型的后验分布趋同于先验信息, 进一步

进行了基于信息理论和概率距离统计方法的评估,
为同位素混合模型的输出结果的质量提供互补的

评估方法
[37]

。这些方法的综合运用, 将进一步提高

消费者营养溯源准确性, 为更深刻地认识食物网规

律提供科学支撑
[11, 37]

。
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STABLE ISOTOPE MIXING MODEL EVALUATION: QUANTIFYING THE
QUALITY OF PREDICTIONS

ZHU Kong-Hao1, LI Bin2, WANG Kang1, GUO Yu-Lun1, WANG Wei-Kang3 and XU Jun1

(1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 2. Neijiang Normal University, Neijiang 430072,
China; 3. Shenzhen Liyuan Water Design Consulting Co., Ltd, Shenzhen 528031, China)

Abstract: Stable isotope technique is of importance to study the ecology of food webs. Based on stable isotope mixing
model of mass balance, stable isotope technology can be used for consumer nutrition traceability, that is, to determine
the contribution of multiple sources of nutrition to the consumer. Stable isotope mixing model of mass balance has been
one of the necessary methods for the traceability analysis of consumer nutrition sources. Bayesian mixing models are
often used to estimate the contribution of different sources of nutrition. Such models provide probabilistic distribution
characteristics of each nutrient source’s contribution to the consumer. However, the result of mixing model fitting and
its matching level with the actual ecology theory are important evaluation contents of model performance. In order to
ensure the accuracy of the modeling analysis, the modeling data must be corrected and verified first. Second, before
data modeling, important prior information must be considered. Furthermore, the process of model selection and model
evaluation for complete reproduction is a necessary condition for modeling, training, verification and evaluation. Mo-
del selection is to select the best model based on a set of model representations with different complexities and model
evaluation is to evaluate the predicted error after selecting the model. According to the specific research, there are va-
rious evaluation indexes in practice, and the information loss of the relative “real model” is described respectively. Due
to the unknown nature of the real model, these evaluations only reflect the relatively good performance of existing mo-
dels in the construction process, so specific problems still need to be analyzed. Based on the measured isotope data set
(isotope data set for Culter mongolicus mongolicus), this paper constructed a series of Bayesian models by identifying
the characteristics of consumer nutrition functional groups and changing the a priori information characteristics of nutri-
tional sources; and described the methods and processes of model performance evaluation by comparing the overall
performance of the model, the difference between measured and predicted values, and the difference between prior and
post-test information, so as to provide a model performance evaluation system for the application of stable isotope tech-
nology to carry out consumer nutrition traceability research. The fit quality of the model can be judged by the evalua-
tion method, which focuses on the model’s ability to predict consumer isotope values. In addition, in view of the cha-
racteristics of the Bayesian mixing model, that is, if a priori information error is low, the mixed posterior distribution
information of the model will converge to a priori information, and further evaluation will be based on information theo-
ry and probability distance statistical method to provide complementary assessment method for the quality of the out-
put for the isotopic mixture model. The integrated use of these methods further improves the consumer nutrition source
accuracy, and provides a scientific support for a more profound understanding of the food web laws. This paper re-
views the best practices for fitting and evaluating Bayesian mixing model, and how to directly avoid many technical is-
sues involved in isotope construction in consumer nutrition traceability analysis.

Key words: Food webs; Stable isotopes; Bayesian models; Model performance; Consumer
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