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Tab. 3 Evaluation methods for the difference between model predicts and observations.

%P Name  4F{Full name Abbérf{f\ition 7 A Formula 14 J5i Property # X Meaning i ?;reiﬂﬁ
B/NRIR 2 Minimum error Epin Emin=min (¥;—y:) (—00,+00) E%gi{%ﬁ% fiz [38]
K TRMRZ Maximum error Eonax E max=m ax (;—y:) (—o00,%0) E%%ﬁ{%ﬁi iz [38]

i & ) 2 T S
B OS2 E 2 A 1
Iy 954 6
RSN Mean squared _! SN2 ) 7 AH Bk
B error MSE MSE n ; i =) [0, +0) @;?ﬁ‘dﬂ”fg'ﬁii [39]
1576 EZJ =] Hﬂ‘ #?
0; RZEMK, %
(VPN
Root IS 5 b HoEgg bl
W77 1% 2 oot mean RMSE RMSE=, | — Y (;—») [0,+00) MSEFEM, 5% [39]
square error n- WE—5
praetiyg gy Normalized 1S Gy s R
g A toot mean NRMSE CRMSE n=! Ji [0,1] T%Xﬂ‘ﬁﬁf)ﬁ;])iﬂ g B9
square error - = i
max (yi)—min (y;)
1< [F] b o B4 b Sk
Fagsxgipgze Meanabsolute g MAE=— Y _ [§;~il [040)  FONMRZEMER  [39]
crror n i—1 ‘I%S/R
s
44t 7 45 Mean absolute 100% ~— | 7 —yi TS F0%,
I, AnA
RT3 4 %) Symmetrie 100% s~ [l
XIFRP-2JA8XS  mean absolute _ ° Vi—Vi =
ARz percentage SMAPE SMAPE= n ; (Pil=lvil) /2 [0,+20) IHE [39]
error

AR Goodness of 1 - ~ - N W o g )

B ociotion G G=1-| 2 G/ 2 (=5) } .1 L BEEE 40
TRIZARBA K ] 5
b n 2 fﬁ?)ﬂﬂf/ﬁ\'ﬁ%iﬁ%
R R R R=) (i—’ 1) O4)  SAFHSHTO: g
ij
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Tab.4 Evaluation of the difference between model predicts and observations

g?gg%% E%j(?ﬁlm\ﬂi% B%/J\gi)ﬂﬂi% i/}]ji'i«%%;é *Ei/}jjiwniﬁ *ﬁ@jﬁg@ﬁ qziéjgjji% ?i’/ﬂ?@ﬂﬁ X‘J*ﬁ(qziéjé@ ?ﬁ‘lﬂﬂﬁl‘:fi‘
> R

AbiRZE X E IR Goodness- R

Trophic cluster  22Euy Enmin MSE ~ RMSE  \py\SE  MAE  MAPE  %SMAPE  of-fit
P%zéﬁﬁs 1195 3089 216 1.47 0.036 1273 127.3 8216 0994  0.198

ﬁfﬁiﬂiﬁfﬁ 1603 0492  0.547 0.74 0019 0594 59.4 3377 0998 0.043

%ﬁiﬁi@fﬁ 1602 2261 0938 0969 0026 0732 73.2 4513 0997 0055

[ 1 Informative with SD  [] Planktivorous
[ Piscivorous Benthivorous
Plankton prey fishes || Benthic prey fishes

30+ |
w
|
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Density
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|
|
O ¥ ¥ ef o ¥ oF o® @ o 0O o o of
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Fig. 5 Priori information and posteriori information of trophic
groups
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UFIR, A B A E .
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DL R A AR ) G B R R
FEARUR IR 73 AT, T AN A2 VH 3 IR0 25 8 ) T,
AT I DY A7 VR A A58 2R 06) ¥ 9 5 9 R U o ik i o 1)
Ja I E B A H 2R 5AE BRI (B 5). ERER
55E51E B A B2 5 75 DUk & A Z o0 A, R
AL IEEAE B IR A SRS AN T VAT VRN (R 5).

SEEHREE-NMEEMZ D, MG B
(Shannon Entropy) | F SRk — 4™ RYAF 2 A
SERE, RS HokE 0 e, T EEm
W7, AT AT & AN [F) 8 2 R IR 26 50 A 2 [A] 1)
AR RERERNRE. #— P IHlE IR
SRR EHE O I B D R Y e R TR R
TR0 FEE (1) A S 0V 2 3 IR R IR AT B A
BRI o 5, AHXHR T LA BRI ME B B iR
HRZEPIER, LheE RS R B o maE
i, EATRIAR R E SRR AR, I

Rl HE B ERERFSE, B Y i EKLEE (Kull-
back-Leibler divergence), 1 3845 b i A0 5 = A5
B, BVE 505 R0 (5 BAHZ IR K, o Bl
™, TS BN R T 5 RIS A R -
Jt. KLBUE(E B2 & H e RGBS ARE
SN [F] R B AN EAS DX TR 1 22 S AR KU (5 3RS
B RIAE B 53R E RS R s
BHEBAGXEE ), kS a0 mE R E—F
fERE(K 5).

AW FMHE FEAG B REE S5 %, VP
il 7 #f DUH R A LR 1) e 5615 B B0 15 B 45
Rk o), ifE BMERAE SARBE ERIHE .
AN T ORI AE A I8 (L S AR IR A8 SRR A 2 A fify D1 - 24y
RAE BRI S B IAE BAAE — R 2=
Ro HOk, M ENME BRI BR(Marginal ) 5T #R
JIT o B EE AR, DA S it SRR VR RS R i AT AR 1
(PN K 2 H0R A B RRE 1Y) /B4 1 s 32 (i AN
AE X)) B FRKIE1 %K P DTk B0 & MAE
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A A 56 43 AT B REAS SR S AR 2 AE, R E A
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AT LG PRSI0, £ 1t 45 R LA B AR AR R D
i, Bl e log, R 1 FIKLEE ez B s,

WAL, BEE2ANNEZE 50 A0 2 (R R EE Y, b — L
HoAt3E FH I HRE AR AR AT 225 (3R 7). {9l i Hellinger
distance"” FJ {4 45 B 40 A M 06 20 A 2 1) 22 57
W AR S 56 43 A7 RS 58 40 A 78 H S 30 () v B A A
[ FR 85 B, WO o B IR — AN AT AE AR AR 1 7 # 72
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Tab. 5 The important information theory measures and statistics
v A FRFull 455 A : E PN
A #fName Namtcl Abbrevaition ~3\Formula 77 X Meaning Referenf:e
EIs8 Shannon H(x) Y BN HEM4RNEER, 280 [43,44]
Eniropy =2 _plx)logo(x) A 8 5 0 15 L UL 12
B Information =, [ ﬁﬁ?ﬁﬂﬁ?ﬁﬁ: AP R G
Entropy :_Zl’ ) logp (x1) BEMHE
SR i g b, 4 . I
A% JointEntropy  H(X, Y) H(X, Y)}%y:p(x, logp(x.) E#%gﬁ%ﬁ% I_’%\Tﬁ/} H(X) FIH(Y)  [43]
:*Z ZP (xi, yi)logp (xi, ¥;)
i=1 j=1
A Conditional H(1|X) H(Y|X)=H(X,Y)—H(X) IR X Yﬁﬁaﬁﬁ’ﬂz RMAXEH O [43]
Entropy B3 B, L2 2 X% F Bk AL
YHT i A ME B
HFE Mutual IX, Y) I1(X,Y)=H(X)—H(X|Y) IR HER{E B (Transinformation) [43]
Information —H(Y)—H(Y|X) ST BE AL B R A EL AR P 11 B
= HX) M H(Y) FIZZEREER X, Y)
=H(X)+H(Y)—H(Y|X)
=H(X,Y)-H(X[Y)— (YIX)
X Cross Entropy Hipos >, Z 0 ZXMHRE RS EX R, MHYE  [43]
Heross(p: ) plx Og WES Y I 28 458 ) AN Tl o 2 P 5 A R
AR AN AHREAN, PN RE 2 410 3
=, plx )10gq(X) I
AER - Kullback— Dyr 72 Jlo p(x) RPN A (B S [43)
KL#J%  Leibler Dalpll =2 ple)log 55 g,k 1 o A q i £ {2 i
divergence, x Ji kAL IE S Aip, LLHSfpE N
KLD ) B BRIk 0 Hip, P9
08 gy SRERMGLKIL, KLIER N T
B A 2 ) (2 R LRE I, SRR B
Dii(p || §)=Heross (s q) H(p) 425 (Information gain)
AHS Jensen- Dy 1 KL 8BRS e AAREE. AX [43]
IS Shannon Diys(p || )= DKL PH = o RIS NISHUE FIMES, /& KL HL
divergence . FERIZ T o TSHIUEE /& X #x HAEF i,
S Dis (qH PL‘I) JSD(P || Q) =JSD(Q || P).
2 2 JSD =0, ifand only if P = Q
AFT g5 Generalized Dgis gISD ... (Pi,---,Py)= F L, =240 1Mmh [43]
~GISHEUE Jensen- n n
Shannon i )
Divergence " (; i P') P ixH(P)
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Tab. 6 The important information theory measures and statistics
FEH® H IR VL TA ) MBETE BRI EN R AT
Infomation theory Source Prior. information Piscivorous Planktivorous  Benthivorous
15 54 Shannon’s Entropy Zooplankton 12.86205362  14.2564454  14.2564497 14.2563905
Zoobenthos 12.85236519  14.2560339  14.2561267 14.2560087
Plankton prey fishes ~ 12.84968762  14.2562204  14.2562049 14.2562201
Benthic prey fishes 12.85681723 14.2560032  14.2559697 14.2560624
MXTI- KL 8% Kullback-Leibler Divergence Zooplankton — —-0.1795993  —0.1789568 —0.1786544
Zoobenthos — —-0.1642057  —0.1642421 —-0.1639883
Plankton prey fishes — —0.1654721 —0.1650742 —0.1654557
Benthic prey fishes — —-0.1682989  —0.1680717 -0.1677031
FHXTJE —JSHUE  Jensen-Shannon Divergence Zooplankton — 0.1387041 0.1391457 0.1390174
Zoobenthos — 0.1409801 0.1410425 0.1412026
Plankton prey fishes — 0.1412871 0.141212 0.1412597
Benthic prey fishes — 0.1400291 0.140179 0.1399777
FAXTIH —GISHLUE  Generalized Jensen-Shannon Zooplankton — 0.1387041 0.1391457 0.1390174
Divergence Zoobenthos — 0.1409801  0.1410425 0.1412026
Plankton prey fishes — 0.1412871 0.141212 0.1412597
Benthic prey fishes — 0.1400291 0.140179 0.1399777
2 X Cross Entropy Zooplankton — 12.6824543  12.6830969 12.6833992
Zoobenthos — 12.6881595  12.6881231 12.6883769
Plankton prey fishes — 12.6842155  12.6846134 12.6842319
Benthic prey fishes — 12.6885184  12.6887455 12.6891141
HER Mutual Information Zooplankton — 12.8620536  12.8620536 12.8620536
Zoobenthos — 12.8523652  12.8523652 12.8523652
Plankton prey fishes — 12.8496876  12.8496876 12.8496876
Benthic prey fishes — 12.8568172  12.8568172 12.8568172
®7 BERIWECEITNELMESEE
Tab. 7 Some distance methods to evaluate similarity of probabilistic distribution
%%\FUH éﬁ:':j AN A, . %%imj{
Name Abbreviation ~3(Formula 71 X Meaning Reference
I RAR B HD 2 1 o [TA2 GRS E MG [ [45]
Hellinger H*(P, Q):E /( dP—\/dQ) WAL KPR, TIRTG T
distance —EEMTRREE, DUNE RS
S, R KU B A T W A
%ﬁ%g%ﬁﬁﬁﬁ%%%ﬁ$
EARE
WK% MMD  MMD[Z, X, ¥] = ﬁ?ﬁi"ﬁ%ﬁﬁ’]#l& kaﬂa [46]
Maximum N E 1 j:K NN
mean Zﬂwm% 2N ks S k)| hin R SRR
discrepancy =1 "ij=1 =1 PLAS B A4 A 5 BT K [ mean
discrepancy. =4k /P KAERIX
“Mmean discrepancy A e KA, Bl
3% T MMD. )5 BMMD{f A
4Tl (test statistic) , M
1M T A A 2 AR R o)
MBS b, A5
H, U A
I 5 AR LS SR A
7L v 24 2% 1) o B B4 P B
FLig i pE WD m M & T HAER N fip“ BB i [47]
& WORK(P, 0, F)=)_ > dyfy S5 i QUi T 78 B2 3 9 44 B
Wasserstein i=1 j=1 s ME, AT ERE R
distance =, 1 H4 B — A9

ey — AR 07 %




436 KA E W) {4 46 &
DRERNME  3) BHIRERIE 5) FERIfL A 7) BE
A T A A T
BRI\ HORE AT L
FEEE \ SR\ \
2R ) ZE(E B EN] 5 RIS
sateion [0 wwroie /0 wrws f
TRAZS (A 55 / 90% Coverage / /
d d d
2) EIRIRERE 4) BB 6) MO A AE 8) Ja g s i
6 MRTUR S5V RE VAL TR ]
Fig. 6 Fishbone diagram of quantifying the quality of model construction and prediction
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STABLE ISOTOPE MIXING MODEL EVALUATION: QUANTIFYING THE
QUALITY OF PREDICTIONS

ZHU Kong-Haol, LI Binz, WANG Kangl, GUO Yu-Lunl, WANG Wei-Kang3 and XU Jun'

(1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 2. Neijiang Normal University, Neijiang 430072,
China; 3. Shenzhen Liyuan Water Design Consulting Co., Ltd, Shenzhen 528031, China)

Abstract: Stable isotope technique is of importance to study the ecology of food webs. Based on stable isotope mixing
model of mass balance, stable isotope technology can be used for consumer nutrition traceability, that is, to determine
the contribution of multiple sources of nutrition to the consumer. Stable isotope mixing model of mass balance has been
one of the necessary methods for the traceability analysis of consumer nutrition sources. Bayesian mixing models are
often used to estimate the contribution of different sources of nutrition. Such models provide probabilistic distribution
characteristics of each nutrient source’s contribution to the consumer. However, the result of mixing model fitting and
its matching level with the actual ecology theory are important evaluation contents of model performance. In order to
ensure the accuracy of the modeling analysis, the modeling data must be corrected and verified first. Second, before
data modeling, important prior information must be considered. Furthermore, the process of model selection and model
evaluation for complete reproduction is a necessary condition for modeling, training, verification and evaluation. Mo-
del selection is to select the best model based on a set of model representations with different complexities and model
evaluation is to evaluate the predicted error after selecting the model. According to the specific research, there are va-
rious evaluation indexes in practice, and the information loss of the relative “real model” is described respectively. Due
to the unknown nature of the real model, these evaluations only reflect the relatively good performance of existing mo-
dels in the construction process, so specific problems still need to be analyzed. Based on the measured isotope data set
(isotope data set for Culter mongolicus mongolicus), this paper constructed a series of Bayesian models by identifying
the characteristics of consumer nutrition functional groups and changing the a priori information characteristics of nutri-
tional sources; and described the methods and processes of model performance evaluation by comparing the overall
performance of the model, the difference between measured and predicted values, and the difference between prior and
post-test information, so as to provide a model performance evaluation system for the application of stable isotope tech-
nology to carry out consumer nutrition traceability research. The fit quality of the model can be judged by the evalua-
tion method, which focuses on the model’s ability to predict consumer isotope values. In addition, in view of the cha-
racteristics of the Bayesian mixing model, that is, if a priori information error is low, the mixed posterior distribution
information of the model will converge to a priori information, and further evaluation will be based on information theo-
ry and probability distance statistical method to provide complementary assessment method for the quality of the out-
put for the isotopic mixture model. The integrated use of these methods further improves the consumer nutrition source
accuracy, and provides a scientific support for a more profound understanding of the food web laws. This paper re-
views the best practices for fitting and evaluating Bayesian mixing model, and how to directly avoid many technical is-
sues involved in isotope construction in consumer nutrition traceability analysis.

Key words: Food webs; Stable isotopes; Bayesian models; Model performance; Consumer
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