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日本鳗鲡肠道N-乙酰-β-D-氨基葡萄糖苷酶的分离纯化及酶学性质

林建城    胡建辉    吴钦端
(莆田学院环境与生物工程学院, 福建省新型污染物生态毒理效应与控制重点实验室, 生态环境及其信息图谱福建省高等学校

重点实验室(莆田学院), 莆田 351100)

摘要: 为了探讨日本鳗鲡(Anguilla japonica)N-乙酰-β-D-氨基葡萄糖苷酶(EC3.2.1.52, NAGase)的分离纯化及

其酶学性质, 通过硫酸铵沉淀分级分离、Sephadex G-100分子筛凝胶柱层析和DEAE-32离子交换柱层析纯化

NAGase, 经聚丙烯酰胺凝胶电泳(PAGE)和SDS-PAGE鉴定酶的纯度、测定酶蛋白亚基分子质量; 以对-硝基

苯-N-乙酰-β-D-氨基葡萄糖为底物, 研究NAGase催化反应的动力学参数, 探讨其酶学性质。结果表明: 日本鳗

鲡肠道NAGase纯酶制剂比活力为2517.40 U/mg, 酶蛋白亚基分子质量为69.98 kD, 酶的最适pH、最适温度、

米氏常数Km和最大反应速度Vmax分别为6.0、60℃、0.336 mmol/L和7.634 μmol/(L·min); 酶在pH 4.8—7.2较稳

定, 在温度60℃以下具有较好的热稳定性, 在65℃以上酶迅速失活。Mg2+
、Ca2+

、Mn2+
、Cu2+

和Fe3+
对

NAGase表现出不同程度的激活作用, Na+
、Li+

和Ba2+
对酶活力几乎没有影响, Zn2+

、Fe2+
、Pb2+

和Hg2+
对酶活

力有不同程度的抑制作用, Hg2+
对酶活力抑制作用最强, 1.0 μmol/L Hg2+

可使酶活力丧失83.69%。化学修饰法

研究表明, 精氨酸胍基不是日本鳗鲡NAGase的必需基团, 而赖氨酸ԑ-氨基、半胱氨酸巯基、组氨酸咪唑基、

丝氨酸羟基和色氨酸吲哚基是酶的必需基团, 二硫键是NAGase活性所必需的。综上所述, 实验采用的日本鳗

鲡肠道NAGase分离纯化方案有效可行, 酶活力易受环境中酸碱度、温度和金属离子的影响, 且与其他不同动

物来源的NAGase具有相似的必需基团。
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长期以来对鱼类消化道的消化酶如蛋白酶、

脂肪酶和淀粉酶等已有相当多的研究, 但对鱼类如

何利用和消化含几丁质的食物知之甚少, 这一问题

近年来逐渐得到学者们的重视
[1]
。Matsumiya等[2]

从大泷六线鱼(Hexagrammos otakii)和日本鲐(Sco-
mber japonicas)胃中分离到几丁质酶, 证实了鱼类

消化道几丁质酶具有很强的底物专一性, 与几丁质

的消化生理密切相关; Ikeda等[3]
先从白姑鱼(Pen-

nahia argentatus)胃中分离到一种分子量为56 kD
的几丁质酶(PaChiB), 证明是一种内切型几丁质酶;
后从三线矶鲈(Parapristipoma trilineatum)胃中也分

离到PtChiA和PtChiB两种几丁质酶同工酶, 它们均

可从几丁寡糖(GlcNAc)n非还原端的第二和第三糖

苷键优先进行降解
[4]; 接着又从褐菖鲉(Sebastiscus

marmoratus)胃中提取分离到SmChiA、SmChiB和

SmChiC三种几丁质酶同工酶 ,  其中SmChiA和

SmChiB可降解几丁寡糖(GlcNAc)n非还原端的第

二糖苷键, SmchiC则是优先降解第三糖苷键, 认为

鱼类消化道含有一种降解几丁质的酶系统, 可以有

效地降解从食物中摄入的几丁质
[5]
。而Kawashi-

ma等[6]
从日本沙丁鱼(Sardinops melanostictus)胃中

也分离到分子量为45和56 kD的两种几丁质酶同工

酶, 并预测了其三维结构模型; 相似地, 黄金凤等
[7]

近期研究发现, 吉富罗非鱼(Oreochromis niloticus)
在前肠和中肠能高表达3种几丁质酶tChit1a、tChi3
和tChit, 而在胃中表达量很少, 推测可能与罗非鱼

栖息地是在水体中下层, 食性为杂食性、食物中含

虾蟹壳较少有关, 并认为这些几丁质酶主要功能可

能不是降解几丁质。

几丁质酶系包括有内切型和外切型几丁质酶,
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乙酰-β-D-氨基葡萄糖苷酶(NAGase, EC3.2.1.52)是
几丁质酶系组成分之一, 具有外切酶性质, 可将几

丁质外切形成N-乙酰葡萄糖胺单体和几丁寡聚糖
[8]
。

目前对节肢动物NAGase已有不少研究, Kogo等[9]

从家蚕(Bombyx mori)表皮层和消化道中获得NA-
Gase, 研究表明分布在表皮层的NAGase与其成虫

化蛹和蜕皮生长密切相关, 而分布在内脏的NA-
Gase主要功能是消化含几丁质的食物, 与蜕皮无关;
研究结果普遍认为节肢动物外表皮NAGase主要是

参与调节周期性蜕皮和新表皮形成的生理过程, 而
内脏NAGase可能主要是参与消化含几丁质的食

物。近年来, 鱼类消化道NAGase的功能与性质也

逐渐得到关注。Kakizaki等[10]
从日本鲐和白姑鱼消

化道分离到高活性的内切型几丁质酶和外切型

NAGase, 发现酶在两种鱼胃中表达有所不同, 可能

是与鱼食性不同有关; 陈晓佳等
[11]

从尼罗罗非鱼

(Oreochromis niloticus)肝脏分离到NAGase, 阐明了

其酶学性质和功能基团; 从此, 对鱼类消化道NA-
Gase有了初步认识。

日本鳗鲡(Anguilla japonica)隶属于鳗鲡目鳗

鲡科, 为降河洄游鱼类, 在海水中繁殖、淡水中生

长, 成鳗主要以鱼、虾、蟹和水生昆虫等水生生物

为食, 人工饲养下主要摄食的是人工配合饲料, 是
一种我国重要的淡水养殖鱼类。有报道鳗鲡消化

道内存在较高的几丁质酶活力, 可以利用含几丁质

的食物
[12], 但对日本鳗鲡外切型NAGase还未有研

究。为此, 本课题拟从日本鳗鲡肠道中提取分离

NAGase, 研究其酶学性质和功能基团, 并探讨环境

因素对鳗鲡消化道NAGase的影响, 为进一步阐明

鳗鲡消化道几丁质酶系的结构与功能奠定基础。 

1    材料与方法
 

1.1    材料

日本鳗鲡出自莆田市东源水产食品有限公司,
挑选体长(43±2) cm的无病害活鳗为试材, 解剖取其

小肠部分, 剔除肝脏、表面分布的脂肪等附着物,
无离子水清洗后沥干, 每样品袋装入1条鳗鲡的小

肠, 冻藏待用。

NAGase底物为对硝基苯-N-乙酰-β-D-氨基葡

萄糖苷(pNP-β-D-GlcNAc), 系上海医药工业研究院

生化室产品, 分离纯化使用的Sephadex G-100是
Pharmacia产品, DEAE-32系Whatman分装, 牛血清

蛋白为标准蛋白, 电泳使用的低分子量标准蛋白

(Phosphorylase b 98.0 kD、牛血清白蛋白BSA 66.0 kD、
Egg Albumin 47.0 kD、Carbonic Anhydrase 30.0 kD、

Trypsin Inhibitor 22.0 kD和α-Lactabumin 14.4 kD)

由天根生化科技有限公司出品。化学修饰剂对氯

汞苯甲酸 ( p C M B )和苯甲基磺酰氟 ( P M S F )是
Sigma产品; 乙酸酐(AcAn)、三硝基苯磺酸(TNBS)、
二巯基苏糖醇(DTT)、乙酰丙酮(AcAc)、溴代乙酸

(BrAc)、N-溴代琥珀酰亚胺(NBS)及金属化合物等

药品均为国产分析纯。 

1.2    方法

日本鳗鲡肠道NAGase的提取与分离　　随机

取3个样品袋, 小肠解冻后切成1 cm小段, 共取样

100 g, 加入300 mL预冷的0.01 mol/L Tris-HCl缓冲

液(pH 7.4), 10000 r/min下捣碎匀浆1min, 4℃抽提

4h以上, 20000×g冷冻离心30min, 取上清液。依次

采用35%, 75%饱和度硫酸铵分级分离酶蛋白, 收集

沉淀物, 透析后冷冻离心(25000×g) 30min, 得粗酶

制剂。先经过Sephadex G-100分子筛凝胶柱(柱规

格为2.6 cm×60 cm)层析分离, 洗脱液是0.01 mol/L
Tris-HCl缓冲液(pH 7.4, 含0.2 mol/L NaCl), 流速为

0.4 mL/min, 自动部分收集器收集流出液, 按每管4 mL
收集, 收集110管, 集中酶活力峰周围的收集管, 收
集酶液, 并继续用于DEAE-32离子交换柱(柱规格

为1.6 cm×40 cm)层析, 同样的缓冲液洗脱, 内含

NaCl (0—1.0 mol/L)直线梯度洗脱, 流速为0.25 mL/
min, 每管收集5 mL, 收集酶活力峰的洗脱酶液, 透
析后用于酶蛋白的纯度鉴定和酶学性质研究。采

用Bradford[13]
的方法测定收集液的蛋白浓度, 以牛

血清蛋白为标准蛋白, 结果以A280表示。

10 3:75

日本鳗鲡NAGase纯度鉴定　　采用聚丙烯酰

胺凝胶电泳(PAGE)和SDS-PAGE鉴定酶纯度, 分离

胶和浓缩胶浓度分别为 和 , 考马斯亮蓝

R250染色。

日本鳗鲡NAGase相对分子质量的测定　　从

SDS-PAGE电泳图谱测定NAGase蛋白亚基相对分

子质量, 以各标准蛋白的迁移率(变量x)对相应分子

质量的对数(变量y)作图, 从样品的相对迁移率求出

酶蛋白亚基的相对分子质量。

日本鳗鲡NAGase等电点的测定　　参照文献

[14]方法, 采用等电点聚焦电泳分离法测定NAGase
等电点。

日本鳗鲡NAGase活力测定体系　　NAGsae
活力测定参照文献[14]的方法进行。2 mL的测活

体系包含有: 5 mmol/L底物0.2 mL、75 mmol/L
Na2HPO4-NaH2PO4缓冲液(pH 6.0) 1.0 mL、dd H2O
0.78 mL, 37℃预保温10 min后, 加入浓度为0.111 mg/
mL的NAGsae纯酶制剂20 μL, 此条件下催化反应

10min, 以0.5 mol/L氢氧化钠(NaOH)终止反应, 在
405 nm波长下测定反应液的光吸收值A405, 设立空
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白对照组, 在此测活体系中测定NAGase活力, 对其

酶学性质进行研究。

1个酶活力单位(U)定义为: 每min催化水解产

生1 μmol/L对硝基苯酚(pNP)所需要的酶量。比活

力单位为U/mg。
pH对日本鳗鲡NAGase活力的影响　　在NA-

Gase活力测定体系中, 测定不同pH3.2—10.0下的

NAGase活力, 其中pH 3.2—5.8选择醋酸-醋酸钠缓

冲液, pH 5.8—8.0使用NaH2PO4-Na2HPO4缓冲液,
pH 9.0—10.0采用硼砂-NaOH缓冲液, 根据不同酸

碱度下测定的NAGase活力, 确定酶的最适pH; 再将

NAGsae纯酶制剂(0.111 mg/mL)分别与各种不同

pH(pH 3.2—10.0)的缓冲液等量混合, 在4℃下孵育

1h, 取出20 μL处理过的酶制剂, 分别加入已在37℃
中预保温10min的反应体系(含5 mmol/L底物0.2 mL,
75 mmol/L pH 6.0的Na2HPO4-NaH2PO4缓冲液1.0 mL,
dd H2O 0.78 mL)中, 催化反应10min, 分别测定剩余

酶活力 ,  计算各试验组的相对酶活力(%),  分析

NAGsae的酸碱稳定性。

温度对日本鳗鲡NAGsae活力的影响　　在测

活体系中, 检测不同温度(20—90℃)下NAGsae的活

力, 酶活力最大的试验温度确定为NAGsae的最适

温度; 再将NAGsae纯酶制剂(0.111 mg/mL)置于各

种不同温度(4—90℃)下分别处理1h, 取出20 μL处
理过的酶制剂, 分别加入已在37℃中预保温10min
的反应体系(含5 mmol/L底物0.2 mL, 75 mmol/L pH
6.0的Na2HPO4-NaH2PO4缓冲液1.0 mL, dd H2O 0.78 mL)
中, 催化反应10min后检测其剩余酶活力, 计算各试

验组的相对酶活力(%), 确定NAGsae的温度稳定性

范围。

日本鳗鲡NAGase酶促反应动力学参数的测

定　　在测活体系中, 仅仅改变底物浓度([S]范围:
0.15—1.5 mmol/mL), 测定不同底物浓度下的NA-
Gase活力(以表示酶促反应速度v), 以1/v对1/[S]作

图, 利用Lineweaver-Burk作图法求出酶的米氏常数

(Km)和最大反应速度(Vmax)值。

金属离子对日本鳗鲡NAGase活力的影响　　在

测活体系中, 先分别加入终浓度均为10 mmol/L的
NaCl、NaNO3、Na2SO4和Li2SO4, 测定NAGase活
力, 探讨Na+

、Li+
、Cl−

、NO3
−
和SO4

2−
对NAGase的

影响; 再分别加入MgSO4、CaCl2、BaCl2、Cu2SO4、

ZnSO4、FeSO4和FeCl3, 终浓度均为0.5 mmol/L, 以
及分别加入0.1 mmol/L MnCl2、1 mmol/L Pb(NO3)2

和1 μmol/L HgCl2, 测定不同金属离子作用下的

NAGase活力, 以相对酶活力(%)表示, 分析金属离

子对日本鳗鲡NAGsae活力的影响。

日本鳗鲡NAGsae酶蛋白的化学修饰　　NAGsae
的修饰方法以及修饰酶活力测定方法参照文献

[15]。采用AcAc、pCMB、BrAc、PMSF和NBS分
别作为酶蛋白精氨酸(Arg)胍基, 半胱氨酸(Cys)巯
基、组氨酸(His)咪唑基、丝氨酸(Ser)羟基和色氨

酸(Trp)吲哚基的修饰剂, DTT为酶蛋白中二硫键的

修饰剂, AcAn为酶蛋白氨基、TNBS为赖氨酸(Lys)
ԑ-氨基的修饰剂。将纯酶分别与8种不同修饰剂以

1﹕3体积混合修饰30min, 在NAGsae测活体系中测

定各修饰酶的活力, 设定未修饰酶活力为100%, 测
定修饰酶的相对酶活力(%), 研究不同修饰剂对酶

的修饰效应。 

2    结果
 

2.1    日本鳗鲡肠道NAGase的提取与分离

日本鳗鲡肠道NAGsae粗酶制剂经过葡聚糖凝

胶柱层析分离, 从层析图谱(图 1a)可知, 获得了3个
蛋白峰, 只有第2个小蛋白峰的区间具有NAGase活
性, 将收集到的酶制剂经DEAE-32纤维素离子交换

柱层析, 从层析图谱(图 1b)可见2个蛋白峰, 仅仅第

1个蛋白峰区间具有NAGase活性, 收集酶活力峰周

围的酶液, 获得酶比活力为2517.40 U/mg, 得率为
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图 1    日本鳗鲡肠道NAGase的Sephadex G-100(a)和DEAE-32(b)柱层析图谱

Fig. 1    Column chromatography of NAGase from intestine of Anguilla japonica on Sephadex G-100 column (a) and DEAE-cellulose (b)
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54.99%, 纯化倍数为27.71的NAGase酶制剂; 进一

步分析分离纯化方案, 结果(表 1)显示, 分离纯化期

间NAGase比活力和纯化倍数得到不断升高, 酶得

率缓慢下降, 最后获得的酶制剂纯度大、得率高,
说明该纯化方案简单又高效。

将纯化的NAGase酶制剂经PAGE和SDS-
PAGE电泳鉴定, 从图 2可知两种电泳的结果均只

有单一蛋白带, 可判断NAGase酶制剂已达到电泳

纯; 进一步以图 2b中各标准蛋白的迁移率(变量

x)对相应分子质量的对数(变量y)作图, 回归一直线

方程为: y＝−1.646x+5.207, 求得NAGase酶蛋白亚

基的相对分子质量为69.98 kD; 将纯酶经等电点聚

焦电泳, 测得日本鳗鲡NAGase等电点pI为4.98。 

2.2    pH对日本鳗鲡NAGase活力的影响

日本鳗鲡NAGase最适pH为6.0(图 3a), pH偏离

6.0越大, NAGase活力越小; NAGase在pH 4.8—
7.2区域内相对稳定, 在pH 9.0环境中酶活力仅剩余

34.9%, 在pH 4.0以下偏酸的环境中酶失活加速(图 3b)。
这说明日本鳗鲡NAGase活力易受环境中酸碱度变

化的影响。 

2.3    温度对日本鳗鲡NAGase活力的影响

89:6

10:3

由图 4可见, 日本鳗鲡肠道NAGase的最适温度

为60℃, 温度在60℃以上酶活力快速下降, 温度达

80℃时 ,  酶失活 (图  4a); 在60℃温度以下 ,
NAGase具有较好的热稳定性, 65℃以上酶稳定性

迅速下降, 在70℃环境内处理1h, 酶活力仅剩余

, 90℃下NAGase接近失活(图 4b)。 

2.4    日本鳗鲡NAGase酶促反应动力学参数的测定

在0.15—1.5 mmol/mL [S]下, 测定不同[S]对日

本鳗鲡NAGase活力(v)的影响, 结果(图 4)显示, 随
着[S]的增大, 酶反应速度v也增大。以1/v对1/[S]作
图(图 5), 得到1条直线, 直线方程为: y=0.044 x+0.131,
R2=0.9985; 以据此方程求得日本鳗鲡NAGase水解

底物pNP-β-D-GlcNAc的Km值为0.336 mmol/L,

Vmax值为7.634 μmol/(L·min)。 

2.5    金属离子对日本鳗鲡NAGase活力的影响

从表 2可知, Na+
、Li+

、Cl−
、NO3

−
和SO4

2−
对

NAGase活力几乎没有影响; 0.5 mmol/L Mg2+
、Ca2+

、

Cu2+
和Fe3+

可分别使日本鳗鲡肠道NAGase活力提

高16.72%、8.34%、4.15%和51.56%, 0.1 mmol/L
的Mn2+

可使酶活力提高34.14%, 这些金属离子对

NAGase呈现不同程度的激活作用; 0.5 mmol/L
Ba2+

对NAGase活力几乎没有影响; 而0.5 mmol/L
Zn2 +

和Fe2 +
可分别使NAGase活力丧失9.27%和

45.38%, 对酶呈现抑制作用。10.0 mmol/L Pb2+
和

1.0 μmol/L Hg2+
可分别使酶活力丧失65.17 %和

83.69 %, Hg2+
的抑制作用最强。 

2.6    日本鳗鲡NAGase的必需基团

胍基和氨基的化学修饰　　AcAc能专一修饰

蛋白质Arg中的胍基
[ 1 1 ] ,  实验结果(图  6a)表明 ,

AcAc在0—200 mmol/L, 对NAGase修饰后, 酶活力

几乎不受影响, 由此判断Arg胍基不是日本鳗鲡

NAGase活性所必需的。AcAn是蛋白质氨基的修

饰剂
[16], 实验表明, NAGase经AcAn修饰后, 酶活力

呈不断下降趋势(图 6a), 说明氨基是日本鳗鲡NA-
Gase活力所必需的; 而TNBS是Lys中ԑ-氨基的一种

有效修饰剂
[ 1 5 ] ,  随TNBS浓度增大 ,  修饰后NA-

Gase活力不断下降, 经20 mmol/L TNBS修饰后酶

活力几乎全部丧失(图 6b), 说明Lys的ԑ-氨基是日本

鳗鲡NAGase的必需基团。

巯基与二硫键的化学修饰　　pCMB是Cys巯
基的专一修饰剂

[16], NAGase经pCMB修饰后, 随
pCMB浓度增大, 酶活力呈不断下降趋势, 当pCMB
修饰浓度达0.5 mmol/L时, 酶活力仅剩16.11%(图 6c),
结果显示, 巯基是日本鳗鲡NAGase活性的必需基

团。而DTT是蛋白质分子中二硫键的有效修饰剂

之一, DTT修饰后酶蛋白的二硫键断裂, 酶空间构

象可能发生变化
[15]

。NAGase经DTT修饰后, 酶活

表 1    日本鳗鲡肠道NAGase的分离纯化

Tab. 1    Purification of NAGase from intestine of Anguilla japonica

纯化步骤
Purification steps

总蛋白量
Total protein

(mg)

酶活力
Enzyme activity

(U/mL)

总酶活力
Total activity

(U)

比活力
Specific activity

(U/mg)

纯化倍数
Purification

(fold)

得率
Yield
(%)

粗酶液
Crude extract 280.62 202.30 25489.80 90.83 1.00 100

35%饱和硫酸铵盐析上清液
35%(NH4)2SO4fraction 185.37 213.28 20475.07 110.45 1.22 80.33

75%饱和硫酸铵盐析透析液
75%(NH4)2SO4fraction 57.29 444.48 16668.07 290.92 3.20 65.39

葡聚糖凝胶G-100层析
Sephadex G-100 fraction 15.68 191.32 15496.76 988.10 10.88 60.80

DEAE-32纤维素离子交换层析
DEAE-32 cellulose

chromatography
5.57 280.33 14016.50 2517.40 27.71 54.99
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力呈下降趋势, 当DTT浓度达到100 mmol/L时, NA-
Gase活力丧失了81.29%(图 6d), 说明日本鳗鲡NA-
Gase酶蛋白的二硫键与酶活力息息相关, 酶蛋白稳

定的空间构象是酶活性所必需的。

咪唑基、羟基和吲哚基的化学修饰　　BrAc
在酸性条件下能专一地修饰蛋白质His的咪唑基

[17]
。

结果表明, 随BrAc浓度增大, 修饰后NAGase活力不

断下降, 150 mmol/L BrAc修饰NAGase后, 酶几近

失活(图 6d), His咪唑基是日本鳗鲡NAGase活性的

必需基团。PMSF可对蛋白质分子中Ser羟基进行

专一修饰
[15], 不同浓度PMSF修饰NAGase后, 酶活

力呈不断下降趋势, 50 mmol/L PMSF修饰NAGase
后, 酶活力仅剩4.28%(图 6e), 说明Ser的羟基与日

本鳗鲡NAGase活性密切相关, 是酶活性的必需基

团。此外, NBS是蛋白质中Trp吲哚基的特异修饰

剂
[17], NAGase被NBS修饰后, 酶活力快速下降, 仅

100 μmol/L浓度的NBS, 可使酶活力下降94.69%
(图 6f), 说明吲哚基为该酶的必需基团。 

3    讨论
 

3.1    动物NAGase的基本酶学性质

不种动物来源的NAGase其酶学性质存在差

异。尼罗罗非鱼肝脏NAGase是由一个蛋白亚基组

成, 蛋白亚基分子质量为61.8 kD, Km为0.229 mmol/L[11];
而尼罗罗非鱼

[18]
精巢中的NAGase, 分子量则为

118.0 kD, Km是0.67 mmol/L; 从昆虫类菜青虫(Pie-
ris rapae)[19]

外表皮来源的NAGase是由相对分子质

量分别为59.5和57.2 kD的两个蛋白亚基组成, Km为

0.285 mmol/L; 虾类体内的NAGase, 如凡纳滨对虾

(Penaeus vannamei)[14]
内脏NAGase是由两个相同蛋

Mw

−69.98 kD

kD     
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30.0−

22.0−
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NAGase−

a b

 
图 2   日本鳗鲡NAGase的PAGE(a)及SDS-PAGE(b)电泳图谱

Fig. 2   PAGE (lane a) and SDS -PAGE (lane b) of the purified
NAGase from intestine of Anguilla japonica (Mw molecular
weight standard)

a. 最适pH; b. 酸碱稳定性

a. optimum pH; b. pH stability
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图 3   pH对日本鳗鲡NAGase活力的影响

Fig. 3   Effects of pH on the activity of NAGase from intestine of
Anguilla japonica

a. 最适pH; b. 酸碱稳定性

a. optimum pH; b. pH stability
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图 4   温度对日本鳗鲡NAGase活力的影响

Fig. 4   Effects of temperature on the activity of NAGase from
intestine of Anguilla japonica

a. 最适温度; b. 热稳定性

a. optimum temperature; b. temperature stability
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图 5   日本鳗鲡NAGase催化底物水解的Lineweaver-Burk双倒

数图

Fig. 5   The Lineweaver-Burk plot of NAGasefrom Anguilla
japonica for the hydrolysis of substrate

图内插图为底物浓度对初速度的双曲线

The inset shows the relationship between the substrate concentration
and the initial rate
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白亚基组成, 亚基分子质量为45 kD, Km= 0.254 mmol/L;
而来自蟹类节肢动物的NAGase, Zhang等[20]

报道的

锯缘青蟹(Scylla serrata)内脏NAGase也是由两个相

对分子质量均为65.8 kD的蛋白亚基组成, Km为

0.424 mmol/L。实验结果表明, 日本鳗鲡肠道NA-

Gase酶蛋白亚基分子质量相对较大, 为69.98 kD,
Km= 0.336 mmol/L。比较不同动物NAGase水解底

物pNP-β-D-GlcNAc的Km值大小, 说明尼罗罗非鱼

肝脏NAGase对底物亲和力相对较大。

在研究pH(3.2—10.0)对日本鳗鲡肠道NA-
Gase活力的影响中, 为了尽量减少环境因素对酶活

力的影响, 分段选用了成分简单的醋酸-醋酸钠、

NaH2PO4-Na2HPO4及硼砂-NaOH等3种常用缓冲

液。广范围缓冲液(pH 2.6—12.0)组成分包括柠檬

酸、KH2PO4、硼酸、巴比妥和NaOH等, 成分较为

复杂, 可能会对酶活力产生影响, 引起实验误差。

而3种成分简单的缓冲液虽然离子强度有所不同,
但都是Na+

型的, Na+
对NAGase活力几乎没有影响,

实验误差相对小些。

pH对来自不同动物NAGase的影响存在差异,
本实验表明: 日本鳗鲡肠道NAGase的最适pH为6.0,
与菜青虫

[19]
表皮NAGase最适pH (6.2)及尼罗罗非

鱼
[11]

肝脏NAGase最适pH (5.8)相近, 高于凡纳滨对

虾
[14]

内脏NAGase的最适pH (5.2)及中国鲎(Ta-
chypleus tridentatus)[21]

内脏NAGase最适pH (5.4), 这
些来源不同的NAGase最适pH均偏向酸性。

在温度对动物NAGase影响的研究中, 尼罗罗

非鱼
[11]

肝脏NAGase和中国鲎
[21]

内脏NAGase的最

适温度均为55℃, 蜜蜂(Apis mellifera ligustica)[22]

表 2   金属离子对日本鳗鲡NAGase活力的影响

Tab. 2   Effects of metal ions on the activity of NAGase from
intestine of Anguilla japonica

化合物
Compound

浓度Concentration
(mmol/L)

相对酶活力
Relative activity (%)

对照Control group — 100.00
NaCl 10.0 100.08±0.25

NaNO3 10.0 100.32±0.32
Na2SO4 10.0 99.72±0.29
Li2SO4 10.0 99.92±0.38
MgSO4 0.5 116.72±1.04
CaCl2 0.5 108.34±2.09

Cu2SO4 0.5 104.15±0.95
MnCl2 0.1 134.14±0.70
FeCl3 0.5 151.56±0.31
BaCl2 0.5 100.04±0.21
ZnSO4 0.5 90.73±1.77
FeSO4 0.5 54.62±1.11

Pb(NO3)2 10.0 34.83±0.52
HgCl2 0.001 16.31±0.60
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图 6    八种化学修饰剂对日本鳗鲡NAGase活力的影响

Fig. 6    The effects of eight chemical modification reagents on the activity of NAGase from intestine of Anguilla japonica

1306 水   生   生   物   学   报 46 卷



NAGase的最适温度为60℃, 而凡纳滨对虾
[14]

和中

华绒鳌蟹(Eriocheir sinensis)[23]
内脏NAGase最适温

度均是45℃, 本实验日本鳗鲡肠道NAGase的最适

温度为60℃。这些不同动物来源的NAGase其最适

温度存在差异, 应该是生物进化中各自长期适应不

同生活环境的结果。此外, 它们的最适温度均较高

(≥45℃), 超出普通生存环境的温度, 而这些节肢动

物或鱼类又都是变温动物, 因此, 在适宜生存的环

境温度下这些动物的NAGase活力都处于较低水

平。日本鳗鲡养殖的适宜水温为13—30℃[24], 此温

度下肠道NAGase活力较低, 直接影响鳗鲡肠道对

甲壳质类多糖的消化。 

3.2    NAGase的酸碱稳定性与热稳定性

凡纳滨对虾
[14]

内脏NAGase在pH 4.2—10.0稳
定, 猪[25]

精液碱性NAGase在pH 3.0—8.9稳定, 锯缘

青蟹
[20]

内脏和尼罗罗非鱼
[11]

肝脏的NAGase则分别

在pH 4.6—8.6、pH 4.0—9.0稳定, 这些NAGase在
偏酸偏碱性环境中均较稳定; 在本实验中, 日本鳗

鲡肠道NAGase的酸碱稳定范围为pH 4.8—7.2, 在
pH 8.0下孵育1h后, NAGase活力只剩61.35%, 不耐

碱性。这说明不同来源的NAGase其最适pH和酸碱

稳定范围均存在差异, 可能是由于不同动物来源

NAGase的分子结构、活性中心构象及其所处微环

境不同所致
[23]

。日本鳗鲡肠道NAGase的最适pH偏

酸性, 而鳗鲡肠道蛋白酶、淀粉酶的最适pH是偏碱

性的
[26], 说明鳗鲡肠道内消化酶的最适pH值大小主

要是由酶自身特性决定的, 与所处肠道的内环境关

系不大。此外, 成鳗又适宜生长在偏碱性(pH 7.2—
9.0)水体中

[24], 偏碱性的养殖水体能否影响到鳗鲡

肠道内环境, 进而影响肠道内NAGase的活性, 还有

待进一步研究。

不同动物来源的NAGase热稳定性不同。尼罗

罗非鱼
[11]

肝脏NAGase热稳定性范围为0—55℃, 中
国鲎

[21]
内脏NAGase在20—50℃温度内稳定, 而中

华绒鳌蟹
[23]

内脏NAGase在10—40℃内酶较为稳定,
在本实验中, 日本鳗鲡肠道NAGase在4—60℃范围

内具有较好的稳定性, 热稳定性范围较大, 这可能

与鳗鲡长期适应了从深海到河流洄游这一较大水

温变化的生活习性相关。酶在较低温度下通常较

为稳定, 但是, 随着环境温度升高, 酶的空间构象发

生了变化, 酶开始变性失活, 凡纳滨对虾
[14]

内脏、

锯缘青蟹
[20]

内脏、菜青虫
[19]

表皮和尼罗罗非鱼
[18]

精巢的NAGase在45℃以上均迅速失活, 尼罗罗非

鱼
[11]

肝脏NAGase在55℃以上稳定性也迅速降低,
而日本鳗鲡肠道NAGase在65℃以上也迅速失活,
说明不同动物来源的NAGase可能由于空间构象的

刚性不同, 对温度的敏感性存在差异, 酶变性失活

所需的温度也不同。 

3.3    金属离子对不同动物来源NAGase的影响

Mg2+
、Ca2+

、Mn2+
、Cu2+

和Fe3+
等5种金属离子

对日本鳗鲡肠道NAGase活力有不同程度的激活作

用。Mg2+
和Ca2+

往往是酶的激活剂, 对凡纳滨对虾
[14]

内脏NAGase和锯缘青蟹
[20]

内脏NAGase均有激活

作用, 但对尼罗罗非鱼
[18]

精巢和蜜蜂
[22]

的NAGase
几乎没有影响; Mn2+

对凡纳滨对虾
[14]

内脏NAGase
也呈现激活作用, 但对尼罗罗非鱼

[18]
精巢NAGase

和中国鲎
[21]

内脏NAGase又有抑制作用。此外, Cu2+

对锯缘青蟹
[20]

内脏NAGase、菜青虫
[19]

外表皮NA-
Gase和罗非鱼

[18, 27]
精巢NAGase都有不同程度抑制

作用, Fe3+
对中国鲎

[21]
、凡纳滨对虾

[14]
的内脏NAGase

也均呈现较强抑制作用, 而本实验结果却有所不同。

实验结果表明, Ba2+
对日本鳗鲡肠道NAGase几

乎没有影响, 与Ba2+
对中华绒鳌蟹

[23]
内脏NAGase没

有影响相似, 但Ba2+
对锯缘青蟹

[20]
内脏NAGase又有

抑制效应。Zn2+
、Pb2+

和Hg2+
这3种重金属离子经

常是酶的强烈抑制剂, 对凡纳滨对虾
[14]

内脏和中华

绒鳌蟹
[23]

内表皮的NAGase均具有不同的抑制效应,
而Zn2+

、Pb2+
和Hg2+

对日本鳗鲡肠道NAGase也同样

呈现不同程度的抑制效应, 其中Hg2+
对酶抑制作用

较强, 1.0 μmol/L Hg2+
可使日本鳗鲡NAGase活力丧

失83.69%。总之, 金属离子效应物对动物NAGase
具有调控作用。因此, 鳗鲡养殖水体中的金属离子,
以及养殖饲料中所添加的矿物质或微量元素, 通过

鳗鲡摄食进入肠道后, 均可对肠道NAGase活力产

生调控, 进而对甲壳质类多糖的消化生理产生影响。 

3.4    NAGase活性的必需基团

化学修饰法试验结果表明 ,  Lys的ԑ -氨基、

Cys巯基、His咪唑基、Ser羟基和Trp吲哚基都是日

本鳗鲡NAGase活性所必需的, 这与中国鲎
[15]

内脏

NAGase活性的必需基团相同, 而尼罗罗非鱼
[11]

肝

脏NAGase活性必需基团包含有氨基、His咪唑基

和Trp吲哚基; 菜青虫
[28]

表皮NAGase中也包含有

Cys巯基、His咪唑基和Trp吲哚基等酶活性的必需

基团, 但Lys的ԑ-氨基不是菜青虫表皮NAGase活性

所必需; 巯基与吲哚基也是槐猪精液NAGase的必

需基团
[29]

。相似的是, Arg胍基均不是这些动物

NAGase的必需基团, 而二硫键又都是这些动物NA-
Gase活性所必须的, 在维系酶蛋白稳定的空间构象

中发挥重要作用。

综上所述, 日本鳗鲡肠道NAGase经过35%和

75%饱和硫酸铵沉淀分级分离、Sephadex G-100分
子筛凝胶和DEAE-32离子交换的柱层析分离, 可得
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到比活力为2517.40 U/mg纯酶制剂, 该分离纯化方

案有效可行; NAGase蛋白亚基分子质量为69.98 kD,
其Km值和Vmax值分别为0.336 mmol/L和7.634 μmol/
(L·min), 酶活力易受环境中酸碱度、温度和金属离

子的影响; Lys中ԑ-氨基、Cys巯基、His咪唑基、

Ser羟基和Trp吲哚基是酶的必需基团, 二硫键是

NAGase活性所必需的, 而Arg胍基不是酶的必需基

团, 日本鳗鲡肠道NAGase与其他不同动物来源的

NAGase具有相似的必需基团。
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PURIFICATION OF N-ACETYL-β-D-GLUCOSAMINIDASE FROM INTESTINE
OF ANGUILLA JAPONICA AND ITS ENZYMATIC CHARACTERISTICS

LIN Jian-Cheng, HU Jian-Hui and WU Qin-Duan
(Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory
Ecological Environment and Information Atlas (Putian University), College of Environmental and Biological Engineering,

Putian University, Putian 351100, China)

Abstract: In order to investigate the purification and its enzymatic characteristics of N-acetyl-β-D-glucosaminidase
(EC3.2.1.52, NAGase) from intestinal tract of Japanese eel, Anguilla japonica, NAGase was purified by extraction with
ammonium sulfate fractionation, then chromatographed on Sephadex G-100 followed by DEAE-cellulose (DE-32)
columns. The purified enzyme was determined to be homogeneous by polyacrylamide gel electrophoresis (PAGE) and
SDS-PAGE. The kinetic parameters of NAGase for the hydrolysis of pNP-β-D-GlcNAc (enzyme substrate) and en-
zymatic characteristics were also determined. The specific activity of the purified enzyme was 2517.40 U/mg. The mo-
lecular weight of enzyme was 69.98 kD. The optimum pH and optimum temperature of the enzyme were 6.0 and 60℃,
respectively. The Km value was 0.336 mmol/L and the Vmax value was 7.634 μmol/(L·min), respectively. The enzyme
was stable with pH of 4.8 to 7.2 and temperature of 4—60℃. The enzyme lost its activity rapidly when temperature >
65℃.  The effects of metal ions on the enzyme were also studied. Mg2+,  Ca2+,  Mn2+,  Cu2+  and Fe3+  showed diffe-
rent degrees of activation effects on the NAGase. Na+, Li+ and Ba2+ had no influence on enzyme activity. Zn2+, Fe2+,
Pb2+ and Hg2+ showed various degrees of inhibitory effects on the NAGase. Hg2+ inhibited the enzyme the most, and the
enzyme activity decreased by 83.69% when its concentration reached 1.0 μmol/L. The essential groups of the NAGase
were investigated using chemical modification method. The results demonstrated that essential groups of NAGase in-
cluded lysine's ԑ-amidogen group, cysteine's sulfhydryl group, histidine's imidazolyl group, serine's hydroxyl group and
tryptophan's indole group, while guanidyl of arginine was not an essential group of enzyme. Disulfide bond was essen-
tial for the catalytic activity of the enzyme. In conclusion, the purification scheme of NAGase from intestine of An-
guilla japonica was effective and feasible. The activity of enzyme was affected easily by acidity-alkalinity, temperature
and metal ions. The enzyme had similar essential groups to the NAGase from other animal sources.

Key words: Purification;  Enzymatic  characteristics;  Essential  group;  N-acetyl-β-D-glucosaminidase  (NAGase);
Anguilla japonica
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