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(1. College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; 2. State Key Laboratory of Freshwater
Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery
Sciences, Wuhan 430223, China; 3. Fisheries College, Huazhong Agricultural University, Wuhan 430072, China)

Abstract: As an important “golden waterway” in China, the Yangtze River has suffered more and more destruction by
human activities, such as ship transportation, channel improvement, bridge construction, hydraulic operations, dock
loading and unloading, all of those caused noise pollution and influenced the fish lived in the river, even caused fish
death. Acipenser dabryanus Dumeril as an important fish in the Yangtze River, its necessary to evaluate how the noise
effects it. Based on this, in order to simulate the natural noise environment in the wild, the indoor noise control was
used to this experiment, a stimulation frequency of 100—500 Hz was set, the Auditory Evoked Potential was used to
test the threshold of juvenile Yangtze sturgeon (Acipenser dabryanus Dumeril). The results showed that the most sensi-
tive frequency of the Acipenser dabryanus Dumeril is 300 Hz, the sound pressure is (133+0.5) dB, the hearing curve of
Acipenser dabryanus Dumeril is a “V”-shaped. Different from other fishes, the Acipenser dabryanus Dumeril has a
higher hearing threshold, but it cannot hear frequency above 500 Hz. Compared with the Acipenser fulvescens and Aspio-
lucius merzbacheri, the hearing thresholds between the three are similar. When compared with the common freshwater
fish in the Yangtze River, the results showed that Acipenser dabryanus Dumeril has a higher threshold and narrower
range of hearing frequency. Results of the experiment will provide important basic data for the protection and popula-
tion reconstruction of the Acipenser dabryanus Dumeril, which also can provide basic data support for evaluating the
impact of the fish-related projects of the fish lived in the Yangtze River.

Key words: Auditory brainstem response; Hearing threshold; Acipenser dabryanus Dumeril
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