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FOEIE AT Rt RE 9% . fE64N 1 LEE i A A
T 37200 2 5 I 5 MR BT B 55 97 1 L AR A IR
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set/z IR IR IF L ITUR 513 B e K Cluster /7 51| HEAT
JRBE AT . RIS AT I R R DY e (B R, K
fif3 1751 5NR. NT. PFAM. KOG. KO.
SwissProt. GOFIKEGGE% 54 P AT FexhyE el
14 ZERFIEEE

B 5z B iz FH Bowtie 23E17 EL X, F FHDEG-
seq o 2 i B OF A= A0 G fify A o e S B AR 2] ) 22 S
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log,|fold_change[>1 N¥iiiLBE . N T HRFKRT %
SRALIERTE 215 B, @I KEGGH B & GO
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1.5 qRT-PCRO#R

MG S AL 0 1) 22 S B TR oy, 25 R S LR
I & SCHR 2 4R 07 1% 43 # Serine/threonine-like
kinase(SLK). Double sex and mab-3 related tran-
scription factor(Dmrt). Feminization-1(fem-1)F15-
hydroxytryptamine receptor gene(5-HT), LA &5 5 i
06 4= TE 40 L PRI A% R R R Nanos R 5 e i
DR 730356 £ J A 28 A eyelin BS56/ M 3k 2B B AT 9
BRIFREAT 518 1), PAB-actinfE N SR R0
PIHE B 2R 5 5 A ] ZE 5 A U mRN A R 38 8 3EAT

qRT-PCRKGI, SR VA 51 B i SR 7 AR 5
FRAS [R) BB AR 2R A 2RI KT
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Tab. 1 qRT-PCR primers

5| ¥)Primer 7 %Sequence (5—3")
5-HT-F GCACCTCGAATCCCTTGAAC
5-HT-R GAAATCTTGAGCGCCTCTGG
cyclin B-F ACGCCACAGTCATGAAGAGA
cyclin B-R TCTTCTCAAATGCGCAGACG
Nanos-F TGGTGAAGCCGAATTGATGC
Nanos-R TTTCTTTCAGCGCGTGACTT
Dmrt3-F CTGCAACAGGAGCCTCAATC
Dmrt3-R TGGAGTTGTAGTCGGAGTCG
fem-1-F ACGCCTTAGAAATGCAGCAG
fem-1-R TCACAGTCAAGACCCGTTGA
SLK-F AAAGGCAACTCAAGCACCAG
SLK-R ACTTCCCGTGAATGTCACCT
p-actin-F GTGTGACGATGATGTTGCGG
p-actin-R GCTGTCCTTTTGACCCATTCC
1.6 ZEEEEXEENERSEWEBNRSEALE
T

JE I 7 4 B R ik e A B A O T DR R AT IR 5T
g5 M3 N (https : //www.ncbi.nlm.nih.gov/Struc-
ture/cdd/docs/cdd _search.html); K FINCBI
(http://www.ncbi.nlm.nih.gov) £ s e % {5 126 A= T8 AH
RILR () 2 FE R T 41 3EATBLASTHUXT, 43 #1 HoAth
VI AR AL, T MEGAT.OR AR AN [F] 0 Fh 1) 24
FERR T BT 22 HL LU, i R Gt

2 #£R

2.1 UnigenefY2H 3 FNIhBE T FE

IS E s PR =Y A SRR S, R3] T
9490131625 /741, M k41 %% 5 19 197146 % unigene
(3 2), KK T2000 bplf12338%, “FHHKEH

2 UnigeneFIIE N HEBMEFRNFRER

Tab. 2 Comment results of the unigene sequence in the public

database

R R R

¥4/ FE Database Number of Annotation

annotated genes  percentage (%)
NREHE 27 33184 34.15
NTH¥E g 12641 13.01
PFAMZLHE 36049 37.10
KOH#i i 20595 21.20
KOG/COGH#% g 19946 20.53
Swiss-prot3 g J# 31480 32.40
GOH¥i e 36331 37.39
TE BT A S5 e v Y50 R 4109 422
AiFALL 97146 100.00
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oo A REIR, TR R R I 2 GO, k3
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%35 N PRINA788349,

22 ERFIEEESH

o 3 LA 23 W 3R A I AE 0 B i A= e d g R
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W EEI A 5300 22 ARk L R, 17.13% 458 7+
WY, LT RS H6.06%; & Z MM 7 1fH
3064, AL 11.54%, B AR AR E7.11%,
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FEABE T, RTERAE L BRI AR 1 22 e Rk R [
HATKEGG & 70, S8 4 31220 25 AC %6 R 7l
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T REIR . 3R 3NONAE IR R AR 22 Rk LR Al
AR E LR RT10ME Fodes, b Bl s Sk
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MKEGG & il i# A i 48 J& A FINCBILL X,
Pk 1k mT e T 1 A [ AR i A A 3] 45 A FH A ik
, H 45 A SR A H 3R TG T Serine/threonine-like
kinase(SLK). Double sex and mab-3 related tran-
scription factor(Dmrt3). Feminization-1(fem-1)#15-
hydroxytryptamine receptor gene(5-HT), UL}t 2 5 i
06 A B 200 L ) 3 B8 1 4E 455 1) Nanos P 5 B 242
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KEEH.
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Fig. 1 Up-regulated and down-regulated differentially expressed

genes in ovoviviparous vs oviparous Artemia ovary

Enriched GO terms
(larva vs. ovum)

2 GOEHEIHTE
Fig.2 Enrichment scatter diagram of GO pathway
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CyclinBEE R0 57 25 A6 Sl il & % 2 A 3Ly
AN, HodhA561—19047 & 2 # ICYCLIN
CCNBI-like_rptl &5 iy, 251953150 BB N
CYCLIN_SF i R4 )38 (& 4D). XI5-HTHEH
(1 R S &5 e 3 T R B 1% B A B 1A 4 3
Hp 332371 LR N 7TtmA _S-HT745 14 35
(K 4E). X¥Nanos [ DR 57 45 84 30 & 0% i
HILAES Ak, 82322790 2 R A
zf-nanos4h 143514 4F).
24 (RIEREFFEEXEERNBEUES TR RGHNL
w2

3 K 38 A= B R 9 3 TR ) 7 2R ek AR A 43
Fral s, SLKEERE IR T 55 B RN i S5 E
(KISLKFF 5 A 55 5 () 5A) e Dmrt33E 5 L1
FPH S AN . 82 AN CTT B 1T AE DR A ol )
Dmrt3F: K G R 7 FI ARG, FoHH Dmrt3 B R 5
P 1 RN R i R Dt 3 S AR B e v (] 5B).
Sem- 135 N Z IR 7 51 5 68 S N (YT R sh i 1 1) Ak
SN S I fem- 1 35 IR &3 R 3 40 AR A A
Hofom- 158205 5 W 1 o3 B IR fom- 177 ARSI %
(B 5C). cyclinBE: R IE TR 7 5] 5 i i 0 20 (I il
BIAH ST () cyelin B3 K 2 3L 1R 7 51 A1 o 503k
(Kl 5D). 5-HTHE:R R EERR T 550 W H5-HTT
G FAAE B = (] SE)o Nanos3: KR FEMR 751 5 B
1A 1R A S W) FT K Nanos 3 R 5 5 12 7 971 AH R 45
I, oA Nanos3: [R5 2 IR /NG5 U Nanos
J7 B ARABA I £ = (] SF).

Tuberculosis -
Toxoplasmosis
Starch and sucrose metabolism -
Ribosome -
Rheumatoid arthritis -
Retinol metabolism -
Pyruvate metabolism -
Protein processing in endoplasmic reticulum -=
Protein digestion and absorption -«
PPAR signaling pathway -
PI3K-Akt signaling pathway -«
Phagosome -
Measles -
Lysosome -
Longevity regulating pathway-multiple species -
L egionellosis -
Insulin resistance
Hematopoietic cell lineage -
Apoptosis - =
Antigen processing and presentation -

2.5 qRT-PCRULIEFIEIHRIRIES FEIE X B ER*R
B3R

qRT-PCRI S5 IR LW, ik i) 5 A2 e AH 5% fige i
= DRI ZE B AR A0 O JIG 2B R i S A b i) ik i A
HREEZES. SLK. Dmrt3. fem-1. cyclin By 5-HT
HINanostE =i H G 5 A (1) 58 53 0 90 A = T 9P fig
H(P<0.05; K 6).

3 Wig
3.1 HREMNFDH

A FE LA OF AR A O G AR A B O 3R AIOME <1 H
R R EAT e AT, 3RAF 797146564 TIAR
Unigene/7 41, FH A3 R 2 C A& F FJUnigene N
37.39%, VERE AR EL . 7EHARSST s
T SR AL e B R R AR T R B IR T VR 2 R
FERE RIS L, a0 H AJB R (Macrobrachium nippo-
nensis)ﬁ:%éﬂqj/El7523.89%?'3?‘5’(@%%%5%“71, R
BN IE AR (Palaemonetes argentinusfan) %R F|
(151 R A5 24% "™ T FLANTE IR (Litopenaeus van-
namei) {1 FE B2 1 G37.28% . L FH 4 v
B ZAIK B i R AT e A2 A8 B AT A LI PR R P A
KPR RVERAS B AR . 1 Fif o5 e B2 (R ZH
J7 45 0 56 - A AT, 1X B8 7R 1) 5 AR FE AR 5C 1) RE
RN A5 B — B2 .

AT SE, HSEsh P ON SR F 52 2 A
Rl R EEE R . a2, & i b Ah
R T g At AR NGO R &
AR R E R — S 50 MR E . P RE
Muordb. AETEMMIAKE . SRR IR R B &
IR L, X LR AT §E 2 5 ) HOAS [R] ST A5 5
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Fig.3 Enrichment scatter diagram of KEGG pathway
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FIAFE I 2 . UnigenefTEKOGE A B & 7 IR £d &
PR RIS 55 S ILH . 40 s, g
Mooy Ge ot oy 2 N R IR s i AR 45 4 5%
B, TRES e AT K. 5 ANKEGGA I E
BEVERE 3 AT, O I B — S AR IE R AR ER AR
3 MAREEANTRAEEEENI0MES R
Tab. 3 The top -ten enriched pathways of up -regulated and
down-regulated unigene in Artemia

wEAH mHET ol EAH
. Gene

Pathway term  Rich_factor 0 value —

number

LAE BAFBEARI 0.047619048 0.000168817 10
JEFEK Protein digestion
Up- and absorption
regulated i 2 25 955
unigene  Amoebiasis
HHER A R
Folate
biosynthesis
it IR A
Glycerolipid
metabolism
MAN LR Z A 0.027777778 0.141920793 5
AH AR
ECM-receptor
interaction
LI R A
Glutathione
metabolism
/INEH it e
Small cell lung
cancer
PI3K-Akt{55iE 0.017130621 0.141920793 8
HPI3K-Akt
signaling pathway
2= 80 A
Chemical
carcinogenesis
K- ETKE 0.044117647 0.141920793 3
Z4iRenin-
angiotensin
system
FiE
JL%ER Ribosome
Down-  HFiAbBAIE#  0.159722222
regulated Antigen
unigene  processing and
presentation
KA EIE-2 0.081730769
A4
Longevity
regulating
pathway-multiple
species
Tl A
Lysosome
BRI
Legionellosis
JBE 5 AT
Insulin resistance
G v
Apoptosis
#RIZMeasles
A
Phagosome
= I

Toxoplasmosis

0.044025157 0.005670205 7

0.076923077 0.108059701 3

0.035714286 0.141920793 4

0.032786885 0.141920793 4

0.032520325 0.141920793 4

0.044776119 0.141920793 3

0.063157895  4.68E-12 54

4.68E-12 23

5.20E-05 17

0.063333333  0.00030973 19

0.077348066 0.000509087 14

0.067961165 0.001609763 14

0.048192771 0.003953602 20

0.064327485 0.011564643 11
0.044776119 0.014675213 18

0.057803468 0.034988835 10

PR, PIBK-AktfE 5l # . TGF-betafs 5
BT R Wntfs S, X S
SR B AR AAE O, ERT I FRAT THE M I oA g 36 52
e S5 i AN [ A AR A ) R AT AR
32 HEMAXEEEERRIESHR

B = B AN = GBI L S 2, TR Sp26 3k R,
[N 1S JE R 1P N 157N 1ESE < S N 7
FIIAF TR A 319N Z R RIER RN B E
ERPr AR A S AN TR,
PI3K-Akt(F il H . BHER, FIRAFKEGGIHE H
XA E R T AR K K B AHCEE NS
WAL s i 2R . it BRI S R
FE 155 1 A (R B AR ) AR B I R O, X e
R R B TR RE S ph H A [R) A AR U DG I
fEIEFILRSLK. Dmrt3. cyclin B Nanos. fem-1F!1
5-HT, %t i AE AN [A) SETEAR T A F A O R AT
T ARSI AN R IE G L B . BF SRR B
635k R T 45 21 (1) 5 [ 45404805 < iR E i AR
J7 L PR R S g M3 — B, B 5 AEFEAE DG . X TR
AT P de 64> AR Bt A5 126 25 (R 78 p L o AT RERI
55K EERE.

ERT ORI BRI, SLKEE S5
AN . A T A, OF HAE R R
I IS LK K [ 3 3% B bL 09 RF 40 i & i 0 v
Xt Artemia franciscanat) M B K I B AR S5 28 0 #r
RIR, DR D% DR R 428 14 Ji oA ot R it Rz 25 1
EWE R IS 5k E R, R e dih Dm-
reE R 2 AR B R B xeh gy e
(Eriocheir sinensis)fem- 135 R 50 R I, 1234 PR 36
15 AE O B2 ZUR 2 A 2R s, IR HAE 5T
BRI R R, Ul B SRR TR R B S
B ILEAE ], RN 5 o g i iy A s s A 7,
1E v IR I 22 W (Procarabarus clarkii)h R Bleyclin
BIERI TR I o B 38 AR A R sk B 23 282
WIS A T R 5 A FEAE Y, 3 eyelin BIEW 5228
BB 24 i s o e 8 v b 3 A T R 1 3R R O 1R
FAU. S-HTBER M6 T SR R, 1716 T 51
SRR R R, FEXE R A AR R . 5-HTH:
[RITE 2L VAR T B8 (Portunus pelagicus) X 4 &
GUANGR A AR AR, FER Reid I E A T XM AL RS
(%) S 2 A T B3R 0T AR 1 R ) B R AR R B
FA™. Nanos3E 42 B 4E MEVE BE D £8.(Brachydanio
rerio) A2 5 Z (W) B U0 BEAH A HR 3RA, X T 5 5
B 0 e s P A A T A Y, 1 2 AR
(Carassius gibelio)' K I, Nanos27E 454140 i
R I i ) 0 AL, R 4 O S LB I B Y
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Specific hits.
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Specific hits.
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Specific hits AR - I
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B 4 SLK. Dmrt3. Fem-1. CyclinB. 5-HTHINanos#& [ {f5F 44 F15 Fil
Fig. 4 Prediction of conservative domains of SLK, Dmrt3, Fem-1, CyclinB, 5-HT and Nanos proteins
A. SLKZEH; B. Dmrt3# [4; C. Fem-18 ; D. CyclinBZ [4; E. 5-HT4 [; F. Nanos& 9
A. SLK protein; B. Dmrt3 protein; C. Fem-1 protein; D. CyclinB protein; E. 5-HT protein; F. Nanos protein
WELL4sWk Argiope bruennichi B

Fe: Limulus polyphemus 13, ARG iR Artemia Parthenoge
JH SR Ixodes scapularis I: Witk X th, Artemia franciscana
14

i th Artemia sinica

Pt EN R Xenopus tropicalis
415|_7Ef& Bt Megalobrama amblycephala
12— PUREARER 4 th Tetraploid Cyprinus carpio Carassius auratus
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TRANSCRIPTOME-BASED ANALYSIS OF OVIPAROUS AND
OVOVIVIPAROUS-RELATED GENE EXPRESSION IN ARTEMIA

OUYANG Xue-Mei, ZHENG Yu-Yu, HAN Xue-Kai, XU Ru-Yi and SUI Li-Ying

(Asia Regional Artemia Reference Center, College of Marine and Environmental Sciences,
Tianjin University of Science and Technology, Tianjin 300457, China)

Abstract: Artemia is not only one of the most important live feed for larvi culture, but also an ideal experimental orga-
nism for scientific research. Female Artemia produce either nauplii via ovoviviparous pathway or diapause cyst via ovi-
parous pathway. In order to reveal the mechanism of different reproductive modes of Artemia, the reproductive diffe-
rential transcriptomes of parthenogenetic Artemia were constructed, bioinformatics analysis were performed to screen
reproductive differential expression genes, and the gene expression patterns were studied by using qRT-PCR. Tran-
scriptome analysis showed that there were 1452 differentially expressed genes, of which 601 genes were up-regulated
and 851 down-regulated in the abscising carpopodium. According to GO function classification, 1243306 and 530 uni-
gene were annotated into biological process, cell composition and molecular function respectively. KEGG enrichment
analysis showed that differential genes were significantly enriched in antigen processing and ribosome pathways. Com-
bined with transcriptome data and qRT-PCR analysis, six reproductive-related genes were screened and verified. The
results showed that all the six reproductive-related genes had higher expression in oviparous Artemia than in ovovivi-
parous Artemia. In addition, the conserved domains of the proteins encoded by six candidate reproductive related genes
were predicted and phylogenetic trees were constructed respectively. The results showed that the protein domains were
consistent with the previously reported reproductive genes. Over all, our study indicated that the selected six genes may
influence the reproductive process of Artemia. This study provides valuable information for dissecting the molecular
mechanism of reproductive pattern in the parthenogenetic Artemia, and may also help to refine the reproductive biolo-
gical theory of Artemia.

Key words: Transcriptome; Reproductive-related genes; Reproductive mode; Artemia
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