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Fig. 1 The change of remaining biomass (w, %) and decomposition
rate (k, /d) during Cladophora decomposition
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Fig. 6 Changes of HIX and BIX indexes during the decay of
Cladophora
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71.62%- 16.83%—55.50%7#110.95%—20.91%. Pro-
teobacteria i % == FEE7E 73 i i B K, ZED15I I8 3]
6.54%, EED1y3/> 710.951% . Bacteroidetes flFirmi-
cutes [ A X = FEAR AL ARALL, Y48 7 AT 7, )5
HA N o H A FUAT B ] (Bacteroidetes) ) AH X =E
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Tab. 1

Abundance and diversity index of bacteria communities attached to the decaying Cladophora (mean+SD, n=3)

Sample/Estimators Shannon index Simpson index Ace index Chaol index
B/ & ARG IR Acelg#t Chaol¥g %
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VE: [ — A R 7 B R AN R R B A 2 3% 22 53¢ (P<0.05)

Note: Different letters within the same column indicate significant differences (P<0.05)
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Abstract: The Cladophora overgrowth has become a widespread global problem. The decomposition of Cladophora
biomass releases large amounts of dissolved organic matter (DOM), a key substance in the biogeochemical cycle of car-
bon in aquatic ecosystems, resulting in a more complex organic pollution in water bodies. Field investigations and in-
door experiments have proven that one of the sources of endogenous DOM in water bodies is the biodegradation of al-
gae. Microorganisms play an important role in the decay of aquatic plants, and bacteria differ in their metabolic prefe-
rences and affinity for substrates. Bacterial diversity and community composition may both influence and respond to
changes in DOM. However, it is not clear how the microbial community and the DOM composition of the surrounding
water column change during the decomposition of the Cladophora. In order to study the composition of algal-derived
DOM, we simulated the decay process of Cladophora in the laboratory. The experiment was carried out in a constant
temperature incubator. 10 g (fresh weight) of Cladophora was placed into sterile polyethylene plastic bottles with 500 mL
of sterile water and placed in dark conditions at 25°C to decay naturally. Three replicate samples were randomly selec-
ted for chemical and microbiological analysis at 1, 4, 7, 10, 15, 20, 30 and 40 days. We performed 16S amplicon se-
quencing of algal-attached microorganisms to analyse the dynamic process of microbial self-assembly on decaying al-
gae. The results showed that during the 40-day decomposition experiment, the biomass of Cladophora decreased, and it
showed a trend of rapid loss in the early stages and slowed down in the later stages. At the end of the experiment (40
days), the dry matter residual rate was 43.15% and the mass loss was 56.85%. During the decomposition process of
Cladophora, DOM quickly released to the maximum within 7—10 days. The composition of DOM also became com-
plicated, and the fluorescence peaks gradually shifted from regions I, II and IV to regions Il and V. A large amount
of simple aromatic proteins, such as tyrosine, were transformed into various metabolites by microorganisms, and humic
substances were produced. The dominant phyla of microorganisms attached to the Cladophora were Proteobacteria,
Bacteroidetes and Firmicutes, with relative abundances ranging from 6.54% to 71.62%, 16.83% to 55.50% and 0.95%
to 20.91%, respectively. In different stages of the decay process, the composition of microorganisms was significantly
different, which was mainly dominated by Proteobacteria in the early stage and Bacteroidetes in the late stage of the ex-
periment. Pearson's correlation (R=0.81, P=0.001) between Bray-Curtis distance and Euclidean distance of DOM com-
position for bacterial communities was calculated using the Mantel test (999 ranking). The results of the Mantel test in-
dicated that changes in DOM composition were significantly correlated with changes in the composition of the bacte-
rial community. These findings have implications for further understanding of the characteristics of DOM released dur-
ing the decay of Cladophora blooms and the relationship between DOM and microbial communities, and provide theo-
retical support for the management of filamentous green algae blooms.
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