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Fig. 1 The effect of 2h pre-exposure in Brachionus calyciflorus
parental generation on the floating ratio of offspring
#1 LE_GLMMZiH4ER
Tab. 1 GLMM result for experiment 2

AbPE Treatment %G1l EEstimate SE -
18hifr Gy

18h oocyte 0.629 0.048 13.186%**

180 A5 0.629 0.048 13.196%**

18h non-oocyte

T IR R ARATE SRR R R S R R
18N, U iy BR300 JE A AR K 2 e Tl (3 15
fif AP I L %4 P<0.001; T[]

Note: Effects of 18h maternal exposure (oocyte or non-
oocyte) on the floating response of the Brachionus calyciflorus
offspring when re-exposed to Asplanchna kairomone. ***P<0.001.
The same applies below
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Fig. 3 The effect of pre-exposure in Brachionus calyciflorus
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their offspring generation

A, 0 R HUR AAMEIR R, B SAER R 48 dUS A
TORHC BE s C. AN RIALBRE ARANA 7™ A2 ORI L5 D. 5 gl
BRI WP NBRFHRERELER

A. Body size of the offspring; B. Posterolateral spine length of the
offspring; C. Posterolateral spined ratio of the offspring; D. The
ratio of posterolateral spine length to lorica length. Significances
are indicated by the lower case
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Tab. 2 Multiple comparison result of different maternal exposure
time on the posteralateral spine length of offspring

JbEE Treatment it EEstimate SE ¢ value
2hAb 2
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18h ANy B
18h oocyte -0.023 0.002  -9.101%**
18hit7 5 ~0.020 0.002  —7.966%%*

18h nonoocyte

VE: *{UIGR L B R *e*P<0.001

Note: *represent significantly different level, ***P<0.001
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THE MATERNAL EFFECT OF ANTI-PREDATOR BEHAVIOURAL AND
MORPHOLOGICAL RESPONSES TO ASPLANCHNA IN BRACHIONUS
CALYCIFLORUS

HE Yu-Han', ZHANG Huan', ZHU Kong-Hao"" %, ZHAO Kang-Shun"’, LI Hai-Lu’ and XU Jun'

(1. State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of
Sciences, Wuhan 430072, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of
Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical
Engineering, Nanchang University, Nanchang 330000, China)

Abstract: Predation is vital in regulating population and community structure in aquatic ecosystems. When predators
exist, many organisms can reduce the risk of predation by generating specific anti-predator responses. Therefore, one
pivotal goal in ecology is to investigate how prey respond to particular predators, and how prey pass the predator stress
on to offspring. In Monogononta, Phylum Rotifera, when coexisting with predators, some rotifers are able to exhibit
morphological, behavioural or life-history responses. And rotifer individuals without direct predator experience can ex-
hibit morphological anti-predator defences via maternal effects. But no study has so far investigated if the behavioural
anti-predator response could be triggered via maternal effect. Hence, in this study, we used B. calyciflorus as the model
organism to investigate whether its floating behavioural response could be triggered through maternal effect. We hypo-
thesized that B. calyciflorus individuals with maternal predator experience could express stronger floating behaviour
when exposed to the predator. In the experiments, we independently investigated the effect of exposure time (2h and
18h) and oocyte status (with and without eggs) of B. calyciflorus on the floating behaviour or morphology of their off-
spring when re-expose the offspring to predator kairomone. Our results suggested that (1) when expose to Asplanchna
predator kairomone, the rotifer offspring with maternal long time exposure experience (18h exposure) have higher pro-
portion floating to the water surface than individuals without maternal experience; (2) the intensity of anti-predator
morphological and behavioural responses depends on the maternal exposure time when the mother generation exposed
to predator kairomone for longer time, the offspring would exhibit both stronger morphological and behavioural re-
sponses. Our results provide novel evidence that behavioural anti-predator response could be affected by maternal effect.

Key words: Predator-prey interaction; Behavioural response; Maternal effect; Kairomone; Asplanchna brightwellii;
Brachionus calyciflorus
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