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(1. KIEHFHER KT 5 E A 2E B, K& 116023; 2. 1 EREA KA AV TR K AES S AEARE K E A SRR E,
X 430072; 3. HrR R K 227K 2 2B, X 430070)

FHE: #12TRIM(Tripartite motif) Z R FIRE 9 5K 7= A2 T — AN £ 284 E T2 K % finTRIM (Fish novel
TRIM, FTR), J9#& 7t fin TRIMAE 8 8 t1.(Tachysurus fulvidraco) 5 R0 35 F s h R IERIVE R, G4 5%E 714
53¢ 4 8 (Danio rerio) FTR67 [F Y5 14 %5 15 ) 38 S8 fin TRIMBE K], i 4 N TfFTRG7 (Tachysurus fulvidraco
FTR67). RGBT R, FTR67HEA Lt B A 7 RN EE, FECERE NG L . T/FTR67A%
SVCVINifFRIE, & —ANHRARIEMEERE . & FRIATIFTR67HMHlpoly(1:C) XRLRE 5 4r 15 F 1Tk
N, A (LB B A s R . % T TFTR67 5 B Dt FTRO7 R IARFE A Th AN, B 72 45 &
W, 1 SKFTROTAEAN R R A 7 3 IR B 52 I Th RE Ak

KHIA: finTRIM; e RS 0K, TILRRN; s, 3fifh
SLEHS: 1000-3207(2023)05-0747-09

hESES: Q34471 SCERFRIRAS: A

TRIM (Tripartite motif) 4<% £ [ i iy %4 IR T-1X
— R E NI A 3R L A RS 454 1 RING
(Really Interesting New Gene). 1—2"B-Box 2 11™
CC (Coiled-coil), &FNRBCC" . K& T N fIRB-
CCHEIE, K Z U TRIMER LA AR 1) City 45 1)
. TRIMFEE NP SeEdma™. WiEk
L, FHEZN V) B TRIM K JELEA R A A2 T A
FIFEE MY 5. AF780% N TRIMJK A, {HAE B
#2KB T 5 AMEST I TRIMAL, IE1E4E — K45 H 1)
TRIMYE X %, # AfinTRIM(Fish novel TRIM,
FTR), 3+ & S EBE 5 . (Danio rerio) 4T T fiv 44
(FTR1-84)™",  f1 T fin TRIMZE A [7] 14 #1490 i o
WA R T 3K, A S fin TRIME R NS 52 W)
R A SR

TRIMZ G HPEES 5K AT 5 58 HES) ) G2 S
FRORS B R B AR 51 TR R, ANZI50%
TRIMZK KK 512 5 THt &R (Interferon, IFN) /G4
AR G S SR . IENG SRR 1, 75 R
SRBUAR RS P R S E AR 1 ARSI R
Gefrguparh, o BE S AR AL IR REAE 4H IR IA AR

ks B HA: 2022-03-25; 1817 HHER: 2022-04-15

FARAZ A UIRLR [Retinoic acid inducible gene- |
(RIG- I )-like receptors]&EERs A, MM F4HAE
IFN BRI AIMx SRR T E RIISEE R (IFN stimu-
lated genes) 133k, HAMHEEANIR" . MKfinTRIM
HAETF N HUW 2 & B R E Y. g o
FTR36" . FTR67""FIFTRS3"fr ta e it itk
KW IE IS IFN OB o FRATT S50 = o5 0 %5 58 1Y
FTRCAI (FTR Carassius auratus 1)\ FFTREPC1/2/3/4,
R4 B AT CEn e 7 B R 2 VR 5 R TRIM 3
AL, SIS TEN GO0 R o RS A S

Rt R TR — Fh R A ek TR 2R
R &R E SBE R TR, B, &
Bt LR A O BRI RN RATE R G T
P TRIMZRR, 5ol 17— 53 S 5FTR67
[F) VR v PR B R o AR SCARTE K B St FTR 6 7 55 [
(1) 5 FE AN D) BERT A 537

1 MR57EE

1.1 AaRmE
3Rl /R, CAB (Crucian carp C. auratus
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blastulae embryonic cells). EPC (Epithelioma papu-
losum cyprinid)f1CO (Grass carp ovary)% A SL56
TR B 28 CH T AR5 32", SVCV (Spring virae-
mia of carp virus)fE EPCAH g S5 14 Il 7 7
B S .
12 H=FERRE, HLARNAREUKRT-PCR

SEU6 FH B 590 B BT K R A I AT T
(GHEY), 5 BB, 4 BRI 5 13107 TCIDso/mL
El’] svcijPBs (52300 pL). ﬂfﬁfo%mshﬂx
LSS AN AN SN NI /NI - NI = NN
B ﬁﬂiﬁ*ﬂﬁﬂ A £12AQH//\?EEX B RNA, A
TRUEscrlpt RT MasterMix kiti{ 7 & (AidlabA 7)) &
B —HEcDNA . € S PCR G A1 F Hieff qP-
CR SYBR Green Master MixiRf)(YEASENA &) {E
Bio-Rad CFX96'" Real-Time system | i&17, fANFE
AEEINEE. GI0E 1.
1.3 EE=ERFIISH

R 95 4 30 1 L DY 20 b iy 44 W TRIM25-like
(GenBank & 3% 5: XP_027021882.1) ffIcDNAJF 41,
FEH3'UTRAIS'UTR e it 1 I i) A1 [ 7 2% 5
Yo DABEHUR 120 H LUK cDNATR I YRR AT
PCRY M. 347 M 551 5 8 s Fp 91 78 e UL IS, &

&1 KBRS

Tab. 1 Primers used in this experiment

1A FR gl
Primer Sequence (5'—3")
TfFTR67-F CAGCCTGTCACATCGAGAC

TfFTR67-R CCAAAGCTGAGAGATGCCTTAG

T{fFTR67-F-hm GCCACTGTGCTGGATgccaccATGGCGCAGG
CGGGG

TfFTR67-R-hm TGGAATTCTGCAGATCTACCGCCGTCTTCT
CCG

TfIFNpro-F-hm GAGCTCTTACGCGTGgccaccGTCGGGTGAT
GTTCACA

TfIFNpro-R-hm CTCGAGCCCGGGCTAGCATGTTCTCGCTCT
CTGCTCG

TfFTR67-RT-F CCTTCCTGCAGAGCTACCGG

TfFTR67-RT-R GTATTTGACTCCGCATCAGCC

TfIFN-RT-F GATCGATAAGGCCAACACAG
TfIFN-RT-R ~ CAGTGTCCTGCTGTCCCA
TfMx1-RT-F  GCGCGAGTCTAAGTGAACAG

TtMx1-RT-R  AGCTCGAGTGGACATCTTGT
Tfactin-RT-F  GTCCGTGACATCAAGGAGAAGC
Tfactin-RT-R  AGGAGGAAGAGGCAGCAGTG
EPCIFN-RT-F ATGAAAACTCAAATGTGGACGTA
EPCIFN-RT-R  GATAGTTTCCACCCATTTCCT
EPCMx1-RT-F GGCTGGAGCAGGTGTTGGTATC
EPCMx1-RT-R TCCACCAGGTCCGGCTTTGT
EPCactin-RT-F CAGATCATGTTTGAGACC
EPCactin-RT-R ATTGCCAATGGTGATGAC

A% BE RO I R IB L ], B e 4 N TfFTR67
Rt R, BLASTHE R 3 5 1 Danio rerio-
4 fh Carassius auratus %4 Ctenopharyngodon
idella. FE#&Electrophorus electricus~ 5 KI5 g fit*
Pangasianodon hypophthalmus~ K i B & Colos-
soma macropomum-~ [ % Puntigrus tetrazona-
8 Cyprinus carpio~ WkEPimephales promelas-
T W Oryzias latipes N1 #& 7R J5 i Takifugu rub-
ripesSE RS R 2, WA R 2 DR
TfFTR67 5 AR M finTRIMJF 51 . % T fin-
TRIM 5 TRIM 161 TRIM25 5 A [RJ5, [F] i 48 - 36
%TRIM25$DTRIM16F?§U, — R FAMEGA X#fF

I EUTVEA RGN . 18 FHAEZ A FSMART
(https //smart.embl-heidelberg.de/) Tl 2 [ 4544
TELE A TASPAR (https://jaspar.genereg.net/analys-
is) 7 A B JE 31 P A1
14 PR

FH RV 20 U7 V%, ¥ TIFTR67 (1 ORFFF 41 i
N B F A% FRIL B M pcDNA3.1(-) I EcoR 'V F YL
RFETIFTROTI HAZRIBH A . K 3 A IFNIE
[A(GenBank &35 NW_020847830. 1)) 5 51 T 7
Y46 N\ 2pGL3-BasiclfNhe 1 BEVINL, #E D
I R R I Z AR (TFIFNpro-luc) . HoAth 18 i kL
WASLES = R R L[21, 22].
1.5 YHREAR RO RER RN

4 % YL A F Polyethylenimine (PEL, MW25000,
IWAFIRE | pgLYIHE B ARSI BT AT
A0 AR N 48U L B, FEER2 R IMA0.01 pg pRL-
TK. 0.1 ugish 7Rk, 0.1 ng B A% F XL ki (3Ff
FORLEE B9 1 210 10) TR Al e A 75 22, 4
MU AE24h )5 F IR ¥ Fepoly(1: C)(polyinosinic-poly-
cytidylic acid, 1 pg/mL). 4 FH AU 't 38 B4 25 2
PRI R G0k ) & (Promega) A, 285 £E 5L R B 70
Hri (Junior LB 9509)_FAG M D6 KA . M
X EINEE, AR EEIRL E. REEA
BEANE il I 58 6 2Rl 10 5 i R ' 2R B 1 1)
eAA -
1.6 FmEHEERN

K FH 4k 5 4 P 955 A% (Cytopathic effect, CPE) 11
HFVEEEPCA A R HEAT o W4l B4 N 96 LR 5 77
R, E G FRIE, I TC I 1998 77 3 10515
FERREIRIRE i, B MR 2 B 52 841, A4L100 pL.
28°CHi775—7d, fr 4L i LW E.CPE, SR )5 &5
BRIt I TCIDs 7 VAT R B
1.7 BUESHh

i i GraphPad 9.0 8% A1 2 4T 22 5 . 3 1% 7 #



5 3 ERSC VS S FTRG6 73H: R (1) 7 1% )2 TR 9% 749

kR INP<0.001, **FRP<0.01, *FK7R P<0.05. Gl — A RGO (E 2). AT R I 1
) wm TRIM16FITRIM25 % % — 3¢, T HAth 58— 3 (fin-
=H TRIM). TfFTR675BE Dt Sxfh. 75 [K [0 i fit
2.1 EFHATIFTROTINEIELE B EY P IFTROTIE B — A~/ R, [F s T
BLAST 4 #7 fir £ N TRIM25-like (XP_02702 finTRIM. REEH DA EYFH R LR —
1882.1) i) 3¢ Ji 1 K (K, KI5 58 5 (L FTRG 7[5 FTR67, {H & 1E 4 i 5 K 40 30 22 /0 A 34N 7 4
PEEI(E 1A), FIHE L R Gy 2 A TFTR67 . MEAF, 5FTR67[AJ§. M, FTR82. FTR83FFTR847E
TfFTR67 5 77 B[R] J B AN &2 1 (Y FTR6 7 0 B A 1R /& Fr A I Ag i 0 25 U — AN A [R5 2 [F] (Ortho-
P FIARAYE, (H2 5 & A CoiPRY/SPRY 45 #4 35k logous gene).
(FIEIFTRCA 1 FIBE D FTRA2H L, AN AENR B A JE H A FTROTIZAN AL S BT A 7 HIUAE A
B A EE (] 1A). TFTR674Y I TRIM R LR e iy 44 -, (E R R R 2 1 o B B 3
= B SE I RING . B-BOX A Coiled-coil 4 éz*ﬁa FTR67F 553 AL T A 7] 1 G ta Ak 5 S caf-
B T R Cli 45 #y38, TIFTR67 4 1 A/ B /) fold; HE i, B @Ay KA EEHFTR67
FHIFTRCA1FIBE & 1 FTR42( 1B). (R AL AR L, b U 2k R 2H el o PR s (B 3)
BB A E 12 R I 5 TIFTR67 DL EZ5 IR KB, FTRO7/EAT Le 2R W tn 4> 1 R R
BAFRER414NF 5, 5124 TRIM16FITRIM25 5 AT R

A RING

TfETR67  MAQAGVELE PCGHSYCKACIKG VLGRNTMLADVV AKKTAINSSSP\"KSEPTEA‘PGDVQCDVCTETR\RAVRSCL 120
DrETR67  MAQAGVEL PCGHSYCKGCIKNYW PLLGRNTMLADVVEKLKKTGLH-AGP-ASDPTQAEPGDVECDVCSGTKNKAFKSCL 118
PhETR67  MAQAGVELE PCGHSYCKACIKGYW PVLGRNTMLADVVDKLKKTA INSASPLKSEPSQAEAGDYVQCDVCAGSRNRAVRSCL 120
CiFTR67 MAQAGVFLE PCGHSYCKGCIKGYW PVLGRNTMLADVVEKLKKTGLH-. AGPTPSDPTQA‘PGDIECDVCSGKK\KAFKSCL 119
FT MAEARISVD ICGHSYCDSCITGCW PALGKNTMLAEVVEKLKKTKLP——————— ADCYAGAGDVQCDVCTGRKYKAVKSCL 113
DrTREZ - MAETRISQDE CGHSYCKSCITDEW ALAKNTMLAEVVDKLKKTTPP——————— ADCYAGAEDVQCDACTGTKYKATKSCL 111
RRRRR, | K, . H sk, kekekekek ;skok skokokoksk k. ckrokk ck: o sk skekk 7H
Coiled coil
TfFTR67  VCLASYCEDHLKPHYESAAFQKHKLTA! LLE GH TVLPS}EMNE EALAETQRKSRQ ) RATQSL, LSAQAALID 240
DrETR67  VCLASYCETHLQPHYESPAFQKHRLASPS L GHDTVLATAEMNEKKNALTEMRRVSQR QATQU [ 238
PhETR67  VCLASYCEEHLKPHYESAAFQKHRLTA L GHDTVLASTEISEKKDA! KSQQ RATQSLTLSAQAALE 240
CiFTR67 VCLASYCETHLQPHYESPAFQKHKLVSPS L GHDTVLATAEMNEKKNA! RISQQ Q/\TQ]»L SAQT/\‘E 239
FTRCAL  VCQESFCQTHF—HEEYHSRKPHKVIDATE EL NHNTVSTIAAQRTEKQKQLKETQIK TR . SHKRSAQTAVE 231
DrFTR42  QCLESYCQTHFERHEEFHSRKPHKVID, ELEVYC NHATVSAVAQRTEKQKELKETLVKLQE ) A/\VFH QS/\QT/\VE 231
EE ST SR S O T sk skek: ook ok kokokek Rk, ok ockk coc L kek: *k Lockkekokr s 148
Coiled coil
TfETR67  ESERIFTELVCSIERRRSEVKELIRJQE LEQETAELKKRDAELNHLAQTDNQISFLQSYRSVCVQPVGMDVPS—~ITAD! G‘GCVMSAVSJQALLD /CQGGFMNI 358
DrETR67  ESERVETELVCSVERRRAEVKELIRGQE! / T LEQE I TELKKRHAELGELSQTDPHIAFLANCKSLCAQPVSVEL ITSEP) GGFVST 356
PhETR67  ESERIFTELVCSIERRRTEVKELIRTQERAATSQAEELLRQLEQEIAE AELSQLAQTENQISEL! QN&GSVCV PVCM 358
CiFTR67 ESERIFTELVCSIERRRAEVKELIRGQERAAVSQAEALLQQLEQEITE RHGELGELSQTEPHIAFLANCKSLCAQPYVPVDL E 357
I 1 DSERIFTELIRSIERSRSEAT NQEKAAVSRAEGRLERLEQE INDL AELEQLSHTHPI II“Lle‘Q LSAPPESTDG SSEDGVRESVRQLRDKLE! 351
DrFTR42  DTERIFTEL CSLKRRSELTQH NQEKT TRSRAFRHMEQI EQETE TELEQLSHTQHHTHF LQSFQSLbAP’EbT v f”l“S LLCFDGLRESVSQLKVKLE FCIEEIEKI‘ 348
Dok kekokk s kok: Cooskk skk o skokr ) sk sk sk, ok skoosko | sk okkk, k| [ oo sk, 216
TfFTR67  SEKVSEVTIIQNT KPKADAES '[‘DLH'I"["[\’«Q(JH’ ————————————— QNTFSVAVPTFS == GFTM 410
DrETR67  SEKVDDVTIIQNT PKTDLESNTA-——~PVFGQTA FPE 403
PhFTR67  SEKVSEVTIIQNT KPKADAES TDLQTPPV«‘QGF 410
CiFTR67  SEKVNDVTIIQNT KPKTDSESNA LEGQ Q TIG [ 406
FTRCAT  SDRVIFTNVNPKTRNDFLQYSHLTLDLNTVNEYLRLSERNRVITNIDTVQPYPDHPD H:LY QV ’L ‘RE%VL(JRL\V\unwso——sv\mvsv STSRKGRGFECAFGGNDQSMILECS | 469
DriFTR42 TERVT T——VPKTRNDFLQ&SH LTLDLNTAHKLLHLSERNRMI ICTETEQPYP H3DRFDS¥\RQVLLRESVRGCCYV\'EIEWS(;IK(‘VLISVSY sISRK()F«\ELVF(,(,NDQSW(, FCS| 466
. — 230
PRY/SPRY
TFFTR67  SSPIGCRPSNR-—-LRLHQRRRRR 431
DrFTR67  SSFGSRTQGPR-—-QRLQPRRRRR 424
POETRG7  SSPNGCRATPR-—-LRLIQRRRRR 431
CiFTR67
FTRCA1
DrFTR42
B 115 57 152 192194 239 267 303 431aa
TfFTR67 [ RING | ] BBOX [ Coiled coil [Eoa] Coiled coil [ |
115 57 150 190 193 236 263 300 42422
DrFTR67 [ RING | ] BBOX [] Coiled coil [oa] Coiled coil | |
115 57 152 192 262 307 431aa
PhFTR67 B3] RING [ ] BBOX | | Coiled coil | |
) 115 57 151 191 263 301 427aa
CiFTR67 [0] RING | | BBOX | =] Coiled coil | ]
115 57 143 183 188 294 372 424 539 542aa
FTRCA1 [] RING | ] BBOX [J Coiled coil [ ] PRY | SPRY
113 55 143 183 367 419 421 539aa
DrFTR42 ] RING | ] BBOX | ] PrY | SPRY ]

1 FTR67WIRIEIR Y 51| [ 8 A G5 Mg AL R
Fig. 1 Multiple alignments and domain arrangements of F'TR67s
AR, PR S, DR R IREE, WEFTR6T S MIFTRCAIAIRE D f FTRA2H 1K 2 S L s S5 M8 BRAE SR (*)A0( A 23
AR E SR — SRR B, S, BELhf, 5 IRIBIAE, S M FTR67TSHIFTRCAL. B L f FTRA2M & 1 45 MR ALk
A. Multiple alignments of several fish FTR67 proteins and crucian carp-specific FTRCA1 and zebrafish FTR42. The domains of protein are

indicated by boxes. The identical (*) and similar (. and :) amino acids are indicated; B. Schematic representation of FTR67 from yellow
catfish, striped catfish, zebrafish and goldfish, crucian carp FTRCA1 and zebrafish FTR42 proteins
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RT-PCR% S 7x: SVCVIRYLRE i 215 S IFN

FMx I7E T A AR IR RIE(E 4A), (BT
ANBEH S TIFTR6 711355 (K 4B). % T4 55 1k,

100

20

46

27

82
92

FTR42 BELL 4D, rerio (XP_695550. 5)
. .
FTR94 B L4 D. rerio (XP_695364. 4)
FTRA41 B f4.D. rerio (XP_695494. 6)

L Frss BE LD, rerio (XP_686163. 5)
|_,— FTRS1 i4.C. idella (ARO38109. 1)

68 ! FTRCAL1 #IC. auratus (QAX87809. 1)
FTRI1 BEDh 4D, rerio (XP_003197 971. 1)
TRIM14 %44 C. idella (ARO85803. 1)

92 | FTRI4 BELL D, rerio (NP_001038735. 2)
97 L———FTRI6 BEL 0D, rerio (XP_017214148. 1)

100 TRIM25L % EC R8P, hypophthalmus (XP_034159907. 1)
L TRIM25L ##0.T fulvidraco (XP_027032863. 1)
TRIMI6L k3 B EMC. macropomum (XP_036432404. 1)

100 ——— TRIMI6L KGR NE " P. hypophthalmus (XP_026790839. 2)
L TRIM25L &0 T fulvidraco (XP_27033814. 1)

100 TRIM16L k3 E G C. macropomum (XP_036420311. 1)
60 L TRIM25L HMUBZE. electricus (XP_035384920. 1)
100 “—— TRIMI6L HiBRE. electricus (XP_035384894. 1)

100 FTR67 JnEk R 5 fns P. hypophthalmus (XP_034170539. 1)
9g_': TfFTRG67 #Mifa T, fulvidraco (XP_027021882. 1)
|_|— FTR67 K& B AGHEC. macropomum (XP_036412344. 1)
79 L——— FTR67 il E. electricus (XP_026876977. 2)

77
99

100

99

100
finTRIM67

84 — TRIM67 Bt C. idella (ARO85804. 1)
43 ['L— FTR67 Jp 3kt P. promelas (XP_039532153. 1)
FTR67 BELh 1D, rerio (NP_001034808. 2)
100 |_— TRIM25L 44 C. auratus (XP_026135018. 1)
73

—— FTR67 (& ta P. tetrazona (XP_043120793. 1)

36 |~ TRIM2SL 8EC. carpio (XP_042574949. 1)
o5 Ly TRIM2SL 4:£.C. quratus (XP_026108250. 1)
100 | TRIM25L 4 f5C. auratus (XP_026117955. 1)
100 —— FTR84 5§ LD, rerio (XP_021332222. 1)
L— FTR99 %51 C. idella (ARO38113. 1)

100

100

100

100

81

| —— FTR84 ##0. latipes (XP_011478319. 1)
100 “—— FTRS84 4T 4575 6liT, rubripes (XP_003972183. 1)
100 — FTR82 %4 C. idella (ARO38111. 1)
L— FTR82 B T f4.D. rerio (NP_001068571. 1)
| — FTR82 ##40. latipes (XP_004076675. 1)
100 “— FTR82 41 6g 454l T, rubripes (XP_011609308. 1)
99 FTRS83 &t C. idella (ARO38112. 1)
L— FTR83 BF Ly f1.D. rerio (NP_001313416. 1)

100 |_|— FTRS3 4] 645 J5 i T. rubripes (XP_003970741. 1)

100

96 “—— FTR83 FH#40. latipes (XP_004076674. 1) _

100 ———————— TRIM25 AH. sapiens (NP_005073. 2)
L TRIM25 /MM, musculus (NP_033572. 2)
L TRIM25 J§a8G. gallus (NP_001305387. 1)
99 | TRIM25 HEM5L. agilis (XP_032994630. 1)
TRIM25 JIREBEEG. seraphini (XP_33815920. 1)

TRIM25

95
ﬂ!_l L TRIMI6 AA T medaka (XP_023805431. 1)

TRIM16 Bt 1 .D. rerio (XP_017213965. 1)

TRIM 16 #53#fita P. fulvidraco (XP_026989744. 1)
TRIM16 AEINRIEX. tropicalis (XP_031750579. 1)

TRIM16

A

L] TRIM16 [E{f[#5G. gangeticus (XP_019357973. 1)
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Fig. 2 The evolutionary relationship of yellow catfish FTR67 with other finTRIM proteins
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neighbor-joining tree is constructed based on analysis of protein sequences using MEGA X program

finTRIM
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Fig.3 Syntenic analyses of FTR67 gene loci from yellow catfish, striped catfish, zebrafish and goldfish
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BLAST searches combined with phylogenetic tree analyses show that three goldfish TR/M25Ls in bolds are the orthologs of FTR67, the
TRIM25L and TRIMI16L in boxes are the orthologs of FTRS7, and GMRF35L is the ortholog of PIGRL
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Fig. 4 Expression analysis of TfFTR67 in yellow catfish tissues injected with or without SVCV
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A. RT-qPCR analysis of TfFTR67, IFN and Mx! transcription in 12 tissues of yellow catfish infected with and without SVCV; B. 5’ flanked
sequence of TfFTR67 gene showing the predicated sites specific to different transcription factors, including NF-kB and SP1. The

transcription start site is indicated by box; C. Schematic of TEFTR67 promoters showing the location of transcription factor binding sites.

Numbers indicate the positions of base pairs relative to the transcription start site of TfF'TR67
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Fig. 5 Overexpression of TfFTR67 negatively regulates IFN response
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A. 5' flanked sequences of yellow catfish /FN gene. The putative ISRE motifs are indicated in box, and the underlined highlights the primer
for cloning TfIFN promoter DNA to construct TfIFN-pro-luc. The transcription start site is indicated by box and in bold; B. Schematic of
THIFNpro-luc. Numbers indicate the positions of base pairs relative to the transcription start site of TfIFN; C. Yellow catfish IFN promoter is
activated by poly (I:C) transfection and overexpression of each of RLR signaling molecules; D and E. Overexpression of TfFTR67 inhibit
the poly (I:C)-triggered activation of TfFTR67pro-luc (D) and DrIFN¢@1pro-luc (E); F. Overexpression of TfFTR67 inhibit the activation of
DrIFN¢1pro-luc by RLR signaling molecules
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Fig. 6 Overexpression of TfFRT67 promotes viral replication
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title detection of supernatants (B), and RT-PC detection of /FN and Mx! transcripts (C)
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MOLECULAR CLONING AND FUNCTION ANALYSIS OF TACHYSURUS
FULVIDRACO FTR67

GUO Wen-Hao"*, DAN Cheng’, MEI Ji¢’ and ZHANG Yi-Bing’

(1. College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, 2. State Key Laboratory of Freshwater Ecology
and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 3. College of Fisheries,
Huazhong Agricultural University, Wuhan 430070, China)

Abstract: TRIM (Tripartite motif) proteins play direct antiviral and indirect regulatory roles in vertebrate innate antivi-
ral responses. The independent expansion of fish TRIM family gives rise to a subfamily unique to teleosts, named fin-
TRIM (fish novel TRIM, FTR). In the current study, we identified a yellow catfish finTRIM gene, which is most homo-
logous to zebrafish (Danio rerio) FTR67, thus named TfFTR67 (Tachysurus fulvidraco FTR67). Phylogenetic tree ana-
lysis showed that FTR67 has undergone gene duplication in some fish species, resulting in increased gene copies. RT-
PCR showed that TfF'TR67 is virally inducible and thus is a constitutively expressed gene. Overexpression of TfFTR67
inhibited the interferon response induced by poly(I:C) transfection and overexpression of RLR signaling molecules,
and also promoted virus replication in fish cells. A previous report has shown that zebrafish FTR67 is induced by virus
infection, and overexpression of zebrafish F'TR67 enhances fish interferon response. Therefore, yellow catfish FTR67
displays the expression characteristics and function features that are different from those of zebrafish FTR67. In addi-
tion, three copies of FTR67 are found in goldfish genome, indicating that there is independent expansion of FTR67 gene
in certain fish species. Actually, we do not know whether there is only one copy of FTR67 gene in yellow catfish ge-
nome although a single one is found up to now. These data together suggest that fish F7R67 has undergone gene dupli-
cation and functional diversification after radiation of fish species.

Key words: finTRIM; Independent expansion; Interferon response; Negative regulation; Tachysurus fulvidraco
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