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Tab.1 The sample size, wet weight, and body length of experimental
fish in each group of the hypoxia tolerance experiment (mean+SD)

5 H e R K
4
qu;?iées é?oﬂjp Saﬁ;ﬁ%ize Body mass Body length
(2) (cm)
Gt X IR 20 12 4.61+1.11  5.06£0.38
Goldfish Control
J1 14 4.99+0.99  5.30+0.27
Exhausted
FRAE(RRIAE YR 12 7.69+1.16  7.18+0.36
Qingbo Control
yapcEEl 12 8.20+1.67 7.28+0.48
Exhausted
il X HEZH 11 5.01£1.00 5.75+0.35
Common Control
carp yab Lk 13 4.48+0.67 5.56+0.32
Exhausted

i AL AR AR B A T 22 S e DR 0 7 300 1) S 3 0 B3 7 2
B ANILREZAIMER B TR

Note: The difference in sample size among groups is due to
unexpected fish’s escape from the adaptation device; The same
applies below

®2 AMZIREARNLEEFAERFENEK(EHESNEES)

Tab.2 The sample size, wet weight, and body length of experimental fish in each group of the thermal tolerance experiment (mean+=SD)

LLES P 2 A5 FEA R TR (LSS

Species Thermal tolerant Group Sample size Body mass (g) Body length (cm)

& re i I 52 %} # 2H Control 11 3.40+0.22 4.75+0.21

Goldfish High temperature tolerance 1384 Exhausted 12 3.5540.28 476+0.18

IR 52 %} [ 2H Control 8 5.98+0.56 5.81+0.24

Low temperature tolerance 1954 Exhausted 9 5.71+0.68 5.66:£0.34

HR AR (5] ) A e 52 %} {20 Control 13 5.56£0.99 6.42+0.44

Qingbo High temperature tolerance J19¢H Exhausted 13 5.7941.04 6.45+0.42

IR 52 it & 41 Control 10 6.61+0.24 6.81+0.68

Low temperature tolerance J13 4 Exhausted 9 6.11+1.38 6.64+0.50

il re i I 52 it HE 4 Control 14 5.13£0.72 5.89+0.43

Common carp  High temperature tolerance 1954 Exhausted 13 5.12+0.86 5.88+0.38

G 52 %} {8 20 Control 13 4.77£1.21 5.75+0.28

Low temperature tolerance J19¢H Exhausted 13 5.2640.99 5.83+0.35
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Fig. 1

The effect of dissolved oxygen level on metabolic rate of goldfish (a), qingbo (b) and common carp (c)

1. 8 9 21 DR P % $8 U 3 BT o 2 fr SR A 00 5 2k, PRI vp I (L 8 R A P e, (ELR SR IR e 145 3R 2. B o rp A R i A

8 1 3 ZHHHR BTN KR, S U BR2 5 min S 0

1. Due to a mis-operation on the data of the common carp exhaustion group, the original data of the first 6 fish are lost, and only the data of

the remaining 8 fish are included in the figure, fortunately the statistics are not affected; 2. The exhaustion group data of the qingbo and

common carp in the figure are collected after water change, and after 25min for the goldfish
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0.05). /73512 3 18555 5258 8 ) CT 0 (F=22.430,
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Tab. 3 The Table of non-interactive two-way ANOVA of ex-
perimental parameters for species and exhaustion exercise stress

Il S A

treatment
S NS OS] 2k
Parameter Mass Treatment Species
s P F=0.042 F=7.122 F=13.896
7 U Per P=0.838 P=0.009 P<0.001
e B F=2.894 F=14.497 F=16.074
i FFFLHHCMR P=0.093 P<0.001 P<0.001
. F=3.667 F=0.339 F=116.611
%%““LOE P=0.060 P=0.562 P<0.001
BRI F=0.205 F=0.462 F=26.304
Marginal MR P=0.652 P=0.499 P<0.001
/e B 2o F=0.636 F=22.430 F=21.744
5 R C T 45 P<0.001 P<0.001
=T F=0.234 F=0.230 F=4364
AL L T o P=0.630 P=0.633 P=0.016
e B F=10.818 F=0.001 F=86.426
i A C i P=0.002 P=0.971 P<0.001
. F=0.811 F=0.351 F=382.576
FOUCRL T p372 P=0.556 P<0.001
[ %8 2H Control
_ _ b
T 2 045 "
318 3040 o
E 12 a £030
1.0 o 0.25
08 O 0.20 c
1 0.6 = 0.15 c
e 0.4 4 0.10 aa
g 02 £ 0.05 tih |+|
= 0 £ 0 N
- @ / @ 7
N N
zsz’( &X
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stricta), FoAE TR AU 8 35 g 2 21 £
HOOHRR 8 AR SR E’Jﬁfhf

Nz e R Rz s 2 —, FEEN A
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Fig. 2 The influence of exhaustion exercise stress on the hypoxic tolerance indicators (mean+SD)

NG PRI 22 5 22, NAZREHR BB 0T ], *Romfl A 22

S (P<0.05), **FnPh P 2 74k B35 (P<0.01); 1] 3

Small letters indicate that the difference significance among species, NA indicates that the datum is not available, *indicates that the

differences between the exhaustion group and the control group is significant (P<0.05), and **represents P<0.01, the same applies in Fig. 3
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Fig. 3 The influence of exhaustion exercise stress treatment on the thermal tolerance indicators (mean+SE)
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EXHAUSTION EXERCISE STRESS ON HYPOXIA AND THERMAL
TOLERANCES OF THREE CYPRINID SPECIES

ZHANG Yong-Fei', HUANG Ke-Ren', LUO Yu-Lian', LIU Qian-Ying', PANG Xu” and FU Shi-Jian'

(1. Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal
University, Chongqing 401331, China; 2. College of Fisheries, Southwest University, Chongqing 400715, China)

Abstract: The hypoxia and thermal tolerances of fish are important physiological characteristics that determine their
distribution, habitat change, and adaptability to climate change. While in the nature, fish are always in the process of
swimming or recovery of post-exercise, whether the hypoxia and thermal tolerances change during swimming or imme-
diately after exhaustive recovery process is unknown for fish. Thus, to study the effects of exhaustion exercise stress on
fish hypoxia and thermal tolerances, we investigated three cyprinid fish species (i.e. Carassius auratus, Spinibarbus
sinensis and Cyprinus carpio) living in different habitats as study cases. Hypoxia and the thermal tolerance indicators of
the three fish species were measured after exhaustion exercise, respectively, to determine whether exhaustion exercise
stress would affect the stress resistance of fish. In the present study, we found that body weight only affected signifi-
cantly on minimal critical temperature (CT,;,), and the indicators of hypoxia and thermal tolerances were different sig-
nificantly between species. Moreover, exhaustion exercise stress led to a significant increase in critical oxygen tension
(Pt) of common carp and a significant increase in critical metabolic rate (CMR) of all the three species as well, but a
significant decrease in point of oxygen tension for loss of equilibrium (LOE) of qingbo. Meanwhile, it also resulted in a
significant decrease in maximal critical temperature (CT,,,,) of goldfish and qingbo. However, there was no significant
effect on the species and other related measured parameters besides the fish species and their corresponding experi-
mental parameters mentioned above. It could be said based on the results that changes in the hypoxia and thermal tole-
rances of fish living in different habitats are different after exhaustion exercise stress, and that fish species vary in
physiological mechanisms responding to other environmental stressors following exhaustion exercise stress, which may
be related to difference in their energy metabolism patterns.
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