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LR RMESS3 3, P 302 BEBHIHIC RN 1),
MZETI KT, &R BEIR28Fh, FH R B
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T5 R B (SR R 24y AT A 21 JiJ2 /K BEAS I
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EN A, FLAAL G T7 151 4 3 1R ek S b 2 mT 4G 1

Bl o AR 45 FARST e 51 = B A e B R RS e
B (1754829), H N RITHERIE(579313). 45487772
SR B I 2K Wy e F v (4 A I (84.29 g/m’),
HCHHUR T I(65.26 g/m’; % 2). MIFEEDNA %
TN TR 3RAS (A X6 P 51 3 B S i 2R A ) 2 2 (A
AFAEEM R KR

U RN W) LR AR (1) 382 % 7328 WU SR A%, A7
TERE RN R RIRMITF . AHFFAEH 15 P ie
Iy R RFIAL ZORIRI T 5 A Pl 3 n] 43 9%
A SRR T FI 0 7SR, A A AT o HERE
RRIEMI P HIA : a0k R e dHTE T il
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ness¥REUIA = T 42, (HEF M A Z=AlphaZ FEEK
PR ZE R (P=0.282; K 2). MIRBEFEARTRY
KF, F)ZIKHIChao l FEHFIRichness TR A2 2 = T
IR, JEJZ /K ) Chaol fE £ flIRichness = & £ 5
BB E S T ORI . JRJZE /K ShannonZ #£14:

BRI Simpsonts BRI 36 3 22 5 .

RIZKMEZ KL T3A 2 57(E 3).
2.3 ERPHIAE L4 FBeta B A M ST

FET IR EEDNA 72 2 AT (1) PH A e 2R 2 IR AT
Bray-Curtis NMDS 73 3R Bl & 2= 55 R IR 1A
FEABLIE (I Stress i 40.1509, #E— 3 HIANOSIM 2T
TR RIE>0, AU ZE R K FHNZER, 2 HAE X,
P<0.01, BIFEFRALFIRIEDNA % 5L R 2
{14) 88 9 Y e A T T 2 4] 722 S 08 B A 5 25 MK (R=
0.252, P=0.001; ¥ 4). MIRIZFEARIAIKE, Stress
{E50.1509, ANOSIM 73, RIERT-0, EAAPIE /N
F0.01, RUIAFIRETFEA IS R RARTEVR 25 HE 2H 1k
HAWREZESR, B IANOSIM /i R FRZ/K
FEJZ /K IR T DN AVE R ) (1) 38 B B e SR B VR 25 4
5 5 AR B B MK F(R=0.002, P=0.398); &2
IR R AR S5 A 2 1 22 57(R=0.148,
P=0.032); J&JZ /KGR I VR 4540 2 ik
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FEEIEAT TU A2 47 HT(Redundancy analysis, RDA). SKBZEE . FERE T I MO, AR AT
INIAEER P KR(WD). 3% B EE(SD) ZKiR(WT) To U 38 5 T e AR R S R 2 S B 3 BRORE O,
FUB (TN B s HE P 45 R (R 4). H5KEE B FBEEIEML. KZ2HMERY
F R Y) P 5 BT R - 2 18] 1 AH O PE Heat- M52k Fa. 13 RERKIE 2 (8] 290 3% Bk 0
map 7 AT B Tl . HUR U O R IEAH G . BRI AL A S AN K (B 6)
Fz 1 FEDNAFFER MR SE ST ERERN S

Tab. 1 Mussels detected by environmental DNA methods and collected by traditional methods

2P Mussels species I EEDNA J5 ¥ Environmental DNA method 1% 45 J7 V% Traditional method
1% H Unionida A Z=Winter #7 Spring
o TR WK gy REK REK many, A5 HEF
i} Unionidae Surface Bottom S{é}ii;n ent  Surface Bottom Séhi;r\lent Winter Spring
Water  Water Water  Water
| = /Nt Parvasolenaia triangularis +
2 /NI Parvasolenaia rivularis + +
3 WMR IR Sinosolenaia oleivora + + + + +
4 o Wik Sinosolenaia carinata + + + + +
5 ZHAMWLEE Sinohyriopsis cumingii + + + + + + +
6 5 A TN Sinanodonta woodiana + + + + + +
7 YeIE i Sinanodonta lucida + + +
8 Sinanodonta fukudai + + + + + +
9 WRZLAT U Schistodesmus spinosus + + + + +
10 5 ERZEF I Schistodesmus lampreyanus + + + + + + +
11 R8s Prychorhynchus pfisteri + + + + +
12 [F 0¥k ¥ Nodularia douglasiae + + + + + + + +
13 /= 0% 57 1 Lepidodesma languilati + + + + + +
14 FLARF U Lanceolaria lanceolata + + + + + + + +
15 JERET ¥ Lanceolaria grayii + + + +
16 SR F i Lanceolaria gladiola ¥ .
17 BIETNUEE Lamprotula leaii + + + + I " .
18 1 A WEELamprotula cornuumlunae + + + + + 4
19 3 /AR EE Lamprotula caveata + + + + + + + +
20 fa R HHMLIE Arcuneopsis pisciculus + + + + + +
21 [ Sk B2EE Cuneopsis heudei + + + + + n
22 JEMREE Cuneopsis celtiformis + + + + +
23 B E W Pseudocuneopsis capitata + + + + + +
24 J B Pletholophus tenuis + + + + + +
25 WG Cristaria plicata + + + + + + + +
26 Y954 i Anodonta anatina + + + + + +
27 FHE T Vi i Anemina euscaphys + + + +
28 W JC Ui I Anemina arcaeformis + + + + n + n
29 BRFERIBEE Acuticosta ovata + + n 4
30 HE RIFIEAcuticosta chinensis + + + + + + n
31 IR RN I Aculamprotula zonata + + + .
32 KEERNNIEAculamprotula tientsinensis + + + +
PRt R Margaritiferidae
33 % H 5 Wit Gibbosula rochechouartii + + +
S5t Total 26 28 24 31 30 26 17 11

VE: Total /R EDNAZ 2 TR I VAL Al — 2 T e AN [ R B A A SR TS, th RO S ORI A% G 07 AR AN R 2494 H R e 3
Note: Total represents the total number of species detected by the environmental DNA metabarcoding method in different en-
vironmental sample types in the same season and the Total number of species detected by the traditional method in different seasons
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Tab.2 Relative sequence abundance of environmental DNA species compared with biomass of mussels by traditional methods

FREEDNAMN 51 B (L VaRrS = Sacty/h s
Relative sequence abundance of environmental DNA Biomass of mussels by traditional methods
Wb HAXS PP 313 B YFh TER A
Species Relative sequence abundance Species Biomass of mussels (g/m’)

Wi IESinosolenaia oleivora 1754829 TR Lamprotula caveata 84.29
B T5 Bk 1 Nodularia douglasiae 579313 HURT e Lanceolaria lanceolata 65.26
B M Vi Sinanodonta woodiana 556164 = HAWLIESinohyriopsis cumingii 41.75
= fWIESinohyriopsis cumingii 116263 5 T5 Bk I Nodularia douglasiae 31.59
15 0% 57 Wk Lepidodesma languilati 94677 [ QS iE Acuticosta chinensis 28.90
HARF i Lanceolaria lanceolata 69282 TR N Lamprotula leaii 26.71
1 JRHHMLIE Cuneopsis pisciculus 64192 F¥EGU5e b Crristaria plicata 12.92
R 7 Lamprotula caveata 49042 W JE 14 i Anemina arcaeformis 8.61
WHIE TV i Anemina arcaeformis 41042 H fy otk i Sinanodonta woodiana 8.27
[ R IG 4 Acuticosta chinensis 14991 FERE T ¥ Lanceolaria grayii 5.89

3 IMEDNAFEXEHEEFRFIME, reads#i
Tab. 3 Number of F-type and M-type reads identified by en-
vironmental DNA method

FAY M
Si%ez?]es F-t;;)e M-t%;)e
(reads) (reads)
R b Sinosolenaia oleivora 1754135 694
B ek Nodularia douglasiae 39081 540232
HURT e Lanceolaria lanceolata 13086 56196
M It IESinanodonta woodiana 4326 546462
BRELH EESchistodesmus spinosus 4158 239
TR N Lamprotula leaii 2839 9328
£k 2445 I Schistodesmus lampreyanus 1358 716
= MWIESinohyriopsis cumingii 970 115293
B 1 P B Pseudocuneopsis capitata 582 15
T /N Parvasolenaia rivularis 58 1244
£ R LI Arcuneopsis pisciculus 37 64155
SB2E Cuneopsis heudei 27 7248

3 e
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naMS. fukudai(GZANFh 3 E oA AL E, MO A

FIHH B H SC 44 5, TR R T e S AN H B4 R A 52
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AR OTULE A M E 4 1 mh i R 21 1) 43 ) A2 i T
Tk HUR SRS A OV, 17 AR SR 43 )
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Tab. 4 Difference test of environmental factors on community
structure of mussels

f5ffindex  RDAL RDA2 r’ P

WD 0.995466226  0.09511568  0.72477152 0.005
SD 0.849474828  0.527629147 0.770609356 0.006
WT 0.892100843  0.451836348 0.890834561 0.003
DO —0.956115923  0.292988639 0.380127151 0.134
Chla 0.014973502 —0.999887891 0.34094901 0.147
pH —0.68553222  0.72804229  0.083753168 0.690
™N —0.907708975 —0.419600306 0.616024561 0.021
TP 0.982101366 —0.188353143 0.218769306 0.342

VE: AKIR(WD). BWIEE(SD). KiR(WT). ¥EfRE(DO)
M4t a(Chl. o). BRIE (pH). S E(TN)ALARE(TP); 0.01<
P<0.05, 23 E; 0.001<P<0.01, 8 E 1; P<<0.001, HR 235

Note: water depth (WD), depth of Secchi disk (SD), water
temperature (WT), dissolved oxygen (DO), chlorophyll a (Chl. a),
pH (pH), total nitrogen (TN), total phosphorus (TP). 0.01<P<0.05,
significant; 0.001<P<0.01, extremely significant; P<<0.001,
extremely significant
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DIFFERENCES IN ENVIRONMENTAL DNA MONITORING OF FRESHWATER
MUSSELS FROM DIFFERENT ENVIRONMENTAL SAMPLE TYPES

3

LEI Yao', ZHOU Chun-Hua"*’, OUYANG Shan"*’ and WU Xiao-Ping"”*

(1. College of Life Science; Nanchang University, Nanchang 330031, China; 2. Ministry of Education, Key Laboratory of
Environment and Resource Utilization of Poyang Lake, Nanchang University, Nanchang 330031, China; 3. Jiangxi Province
Key Laboratory of Watershed Ecosystem Change and Biodiversity, Nanchang 330031, China)

Abstract: In order to clarify how different environmental sample types affect the detectability of mussel species when
using environmental DNA metabarcoding technology, surface water, bottom water and sediment were collected in Po-
yang Lake in winter and spring of 2021 for environmental DNA metabarcoding analysis, and then combined with tradi-
tional methods for collection and verification. A total of 33 species of mussels from Poyang Lake were detected by en-
vironmental DNA metabarcoding technology, while 18 species were collected by traditional methods. All the species
collected by traditional methods could be detected by environmental DNA metabarcoding technology. The number of
mussel species annotated in surface water and bottom water was respectively higher than that in sediment, and the mus-
sel species annotated in surface water and bottom water completely covered sediment, respectively. There was no signi-
ficant seasonal difference in a diversity level of mussels based on environmental DNA metabarcoding, but significant
seasonal difference in B diversity level of mussels. The mussel diversity in both surface and bottom water was signifi-
cantly respectively higher than that in sediment samples. The Beta diversity analysis also showed significant diffe-
rences between water samples (surface and bottom water respectively) and sediment samples. But there were no signifi-
cant differences in the diversity and community structure between surface and bottom water. Water depth (WD), depth
of Secchi disk (SD), water temperature (WT) and total nitrogen (TN) significantly affected the community structure of
mussels in Poyang Lake. Environmental DNA metabarcoding is feasible in monitoring mussel freshwater diversity, and
water sampling is better than sediment sampling. There is no significant difference between surface water and bottom
water.

Key words: Environmental DNA metabarcoding; Sediment; Water samples; Species diversity; Freshwater mussels
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