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Fig. 2 Swimming behavior of L. vannamei
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Fig. 3 Oscillogram of the acoustic signal related to swimming
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In the figure, the color box represents that the amplitude of the
signal waveform is getting smaller and smaller with time, which
reflects that the duration of the sound produced by the fast
swimming of shrimp is between 0.03—0.04s, and the black box
represents that the amplitude of the waveform tends to be flat, in
which the shrimp does not produce obvious sound signals
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Numbers above the arrows represent the corresponding waveform
in Fig.4, respectively, and the red color blocked in the boxes represents
the signal characteristics of the corresponding waveform after

Fourier transform
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ACOUSTIC CHARACTERISTICS OF FAST SWIMMING AND ITS
INFORMATION UTILIZATION FOR LITOPENAEUS VANNAMEI

LI Zhao-Cheng, XIANG Sheng-Yu, SHEN Meng-Ting, WANG Xiu-Xiu, ZHANG Ri-Xin and CAO Zheng-Liang
(College of Marine Science, Shanghai Ocean University, Shanghai 201306, China)

Abstract: White-leg shrimp (Litopenaeus vannamei) as an important aquatic economic species in the world, behavioral
acoustics research will help to improve the level of aquaculture. In the present study, two sizes of the white-leg shrimp
(4—6 cm TL and 10—11 cm TL) from the nursery of Shanghai Ocean University were investigated. The experiment
was conducted in 2 glass tanks (4 cmx28 cm*30 cm) which were shaded. In addition, there were two controllable un-
derwater lights of 10W in each tank. One underwater camera and one hydrophone were fixed in each tank. The hydro-
phone was 20 cm away from the top and connected to an SM4 recorder. Prior to the experiment, the controlled under-
water light and the underwater camera (turned on before placing the water) are placed in the desired location. For each
measurement, individual white-leg shrimp was used and acclimated for 40—60min under the dark prior to measuring.
Sounds were recorded for 10 minutes after the lights were switched on (a timer controlled the time). Meanwhile, the be-
haviors of the white-leg shrimp were captured by the underwater camera.The results showed that the main peak fre-
quency of the acoustic signals was about 250 Hz, and the secondary peak appeared near 425 Hz produced by the small
white-leg shrimp during fast swimming. The primary peak frequency of acoustic signals was 70 Hz, and the secondary
peak was 15 Hz produced by the large shrimp. Further, the center frequency and frequency range of the acoustic sig-
nals of the tail flick was significantly different from that of the fasting swimming. We also collected a signal of tail flick
from the white leg shrimp in the shrimp pond. The energy range of the signal was 0.5—6 kHz. The energy frequency
range was 1—4 kHz, and the maximum concentrated energy frequency was about 2 kHz. Different from the laboratory’s results,
the main peak frequency of the signal was about 1.8 kHz, and there was a main secondary peak of about 250 Hz.
In comparison to the laboratory data, the pond background noise and the sound produced by the white-leg shrimp dur-
ing fast swimming were low-frequency signals. The frequency of the signal by tail-flick of the white-leg shrimp was
higher than the background noise. The signal duration in the pond and laboratory was about 0.01s, and the frequency
distribution of the energy was concentrated at 2—3 kHz. In summary, we studied the fast swimming sound production
by two size white-leg shrimp. In the future, the tail flick sounds produced by shrimps of different conditions need fur-
ther study, which is essential to utilizing sound information for monitoring shrimp health.

Key words: Fast swimming; Acoustic signal; Information utilization; Litopenaeus vannamei
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