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I 2 00 8% D0 A2k 20, AT A R B e 3, A 350
SE AR, R TS I SRR B Uy #57K TR
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S BEAT B WM, e B4 T B2 L min Fr B
2 i (Tail beat frequency, TBF).
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WHEE L. 1—6 BL/sHE7MRIG 4L, F46E
1, #4751 FE 48 % (Standard metabolic rate, SMR)
12 B FE A (Activity metabolic rate, AMR)Jilll
o BRI R N KA AR B, 38 M. 1h 5 % ]
IKFE AT AU A S0 2 (43 I Smin. 10min.  15min
F120min) .

FEE R [Mo,, mg/(kg- h)HITHEARXA: Mo, =
Qd(thO) JM, ST, Qv B B X A
(10L); d(DO)/dtFE1E# 15 H ARt~ ¥4 A S b i
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PRI E o AT IES AR IR GGR 1),

AT S0 5E O JBONE JIE  I  vk E EE R
W GE E I TF A IEAS A1 (P>0.05) 0 SR 1) 24 5% Jk
IV N (17.56:£0.30) em/s, FHXF BN I 33~ (1.42+
0.33) BL/s; 2505 Il 3 VK I B 9(75.58+2.21) cr/s,
FERH I B vk B 9(6.10+0.19) BL/s; 4 %] B & i
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(9.22+0.33) BL/s.



1996 K& A& Y ¥ 47 %
Fz1 BYMBNRIR. ERIFKEEMBLIGOEE
Tab. 1 Induced velocity, critical swimming speed and burst swimming speed of Acanthopagrus schlegelii
T H Item S-WHE K (sig.) JuFRange Mean+SD
IR #%F Absolute (cm/s) 0.100 16.00—20.00 17.56+0.30
Induced velocity X} Relative (BL/s) 0.754 1.23—1.70 1.42+0.33
I S #6%f Absolute (cm/s) 0.769 60.90—90.27 75.58+2.21
Critical swimming speed FA%} Relative (BL/s) 0.239 458714 6.10£0.19
=} 7/{(]{7}(7](@ B 4%+ Absolute (cm/s) 0.964 87.80—135.20 113.84+3.29
Burst swimming speed #HXfRelative (BL/s) 0.585 7.32—11.79 9.22+0.33

22 BEMZE

LA (1 4 R AR 5 A IR IR o R B 2T
7o BEFE R (1—7 BL/s)UBE N, $ MR 1A H
HRE R R ENEMEMEKR, HE®E TN
TBF=0.8078U+0.851(R’=0.7847, P<0.05).

8 -
N ° °
=7 .
ﬁ:g 57 : O ¢
X 3 ° o.
53 4 ° e
w 3 ¢
gﬁg 31 o. U °
S 0 0
2 .
O B S
1 2 3 4 5 6 7

e
Flow velocity (BL/s)
B2 BREARE R 5TE AR R

Fig. 2 Relationship between tail beat frequency of Acanthopagrus
schlegelii and flow velocity
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PRI AT R 1 EFESA R N(332.25+4165.47) mg/
(kg'h). fE1—6 BL/siitd ~, i8R S5 E R —
W2 TAKRE 3), METTEAN: Mo, =16.59U"-
118.69U+397.00(R*=0.933, P<0.05). HAKFEA L HIN
7£3.6 BL/siiLE K, Z14185.65 mg/(kg-h); S 1EFE
AERNTUE TS IS EFEA#E397.00 mg/(kg h).

SR 7E AN [R) A S5 A N ) A7 B B FERECOT
HiniE 2 /R R A 3), A TN COT=
0.75U"*+0.006 U *(R°=0.992, P<0.05). 7E4 BL/si
TR Z166% U, R AL, COTIE B/, £1°50.11 mg/
(kg'm), HBEEHE G INCOTHALRFFAAL .
24 AEMETERNESEGTSH

W7 45 R (73 BUAE T0) ) AR A7 s i) A S 4
H 33t 47 Kaplan-Meier 4= 47 73 1 Fl Cox [A] )5, 45 4
R 2FR, A REINE 4FTR . AR, IR,
PEL 2 £ 1) 2B A7 B R) R I 15 58 1 24 1 B[R] 10,
AW H F b A7 A= A7 I (8], L 2H AR A7 I (R TG S vt
572 7 (P>0.05); T AE R (AN s 20, B0 &) £ (1)

A= A 1] 43 51 92 156min(129—183min) A1507min
(201—813min), B12.6h(2.15—3.05h)H18.45h(3.35—
13.55h), % 10 rf A7 A= 7 I 18] 240 2 g ) o A A=
AFI TR R 1/3, T A8 T2 XU BE vy AL T8 N 75720338 4%
(P<0.001, HR=21.338, 95%CI 4.275—106.512).

SEEG O SR, FEFR K, WIAR I SR 4 0%
BIEH 5 B A I T ) 38 K 0 AU R BRI, S5 £
DARHA] 22250k, WP IRCBA S R, B b B,
FEPRAN 22 W AE R — P FRAIK, SRTe f I T 3 2K
1, HILAUBN, B i 0] B KO RS, 0 56 5K Sl
R, HI2—3k FE R, fE T IE R, AR
ANk 4h; PSR S 2580.34(0.23—0.52) mg/L.
FEACREF F U T, S A 2R AT, HA IR
LHBET I 8] 4359 95.08h F15.92h, 5 fiF A AE 43 3N
1.68%11.69 mg/L; Hriiigt 204 121 7] 43 51 A 8.42h Al
9.23h, VEARENE 2 1 J91.69F11.72 mg/L; H:4x M4
A FE ALK 10hR BB IET: . fERE T,
i %)) t0 FESLF PR 100, RAG 4R A7, JETSL50 M)
= 5 A N(3.18+0.76) mg/L.
2.5 SRIEXTELNE EIBE LA

SR A5 A [R) A E T R At UL A L A
MR SARE & EUR 3R, K IESHERLE
AT7 2SR S, & 480 PSSR T0.05, FF6 77
ZEMT At . T7 ZE AT A R AR, WA FLIRAE =
TR B T AR SE IS A i P I FLERTE E A
SRR E TSI b H R E m T
i AL SLG2H, BT LR R & UK, A
il R LR JE 2N L, S SR R FLER IR & T
iK% i LR R & B, MALRR BRI &
T T WURE J5 A, UL R AN i 7L BR 3 T i, 1X
FhARb A G AR R M — 3. BE JRAE i B
B3 TR . R R B3 T R s
SIS H., T I H ) T 0 S B R A I 2
T H A STUR 2H, T PR S5 K A R 280 R N LR
Ja B R RE . LA BERR LR 1) & B AE
B0 5N A/ T8 O 1 B A T T - e
B0 ZH AN = SRR 2, 5 TR AR A B — 5
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Fig.3 Oxygen consumption rate (M o,) and cost of transport (COT) of Acanthopagrus schlegelii at different flow velocities
*2 FAERETERGFEGFEHNENESMY
Tab.2 Survival time difference of Acanthopagrus schlegelii at different flow velocities
N A A7 ] (95%CLy/ 43
4041 AL IS Pl sh4L Piii
Group Median survival Pvalue HR (95%CI) Group Pvalue  HR (95%CD)
time (min)
& : * & : 21.338
i 1LStill water 156(129—183) #t 1LStill water <0.001 (4275—106.512)
53 : 0.011 o : 0.245
{KItiELow flow velocity — <0.001 (0.002—0.084) &It iELow flow velocity 0.076 (0.052—1.159)
253 : : 0.009 P : . 0.192
Hhifi % Medium flow velocity — <0.001 (4 0010.068) rhifiiEMedium flow velocity 0.037 (0.041—0.905)
e . 0.047 e .
T YfﬁJEngh flow VelOCIty 507(20 1—81 3) <0.001 (000970234) ] Y}ﬁﬁngh flow VelOClty*
VR R
Note: * is the control group
Survival functions
1.0 ¢
09 t
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T 06t
Z
Zost Feisy sl
E o
04 | s
1 KT
o | i
’ — i
0.2 —+— i 1k-Censored
—— {iK i i#-Censored
01 p 7 i -Censored
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HEAF IR} ] Survival time (min)
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Fig. 4 Survival function of Acanthopagrus schlegelii at different flow velocities
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VLR LI 1.4 BL/s, TR 325 70 BT 9038 I8 4% 1
Xof 81 S ST VK B 0 TR R T B H SR (1) I
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fe 7 it ik 38 P R 17 o £ U Uk A 0 R b HE FR
bR, 1 B A TR RGN ZMES, RPN 2R
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FE I 1] 25 K M 2min 2 60min AN 25, i ] i £ ) /2
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75D (10 e Sk T 8 AR A 1) Bl A, oIk — i) 7t
P ARAELEAR R A3 (LI e ok e o ) e 25 />
AT DU B A #2881 s KA A VG B, TR
TR T RO E RN BEHgTIT e T ok
i, SRR SE [ 200 (WU B AT, 45 T M E R
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Tab.3 Contents of metabolite in muscle, liver and blood of Acanthopagrus schlegelii at different flow velocities (mean+SD)
2 R Tissue I Metabolite 2 Oi)j:%:iltow Velomt};éc(:):]/(szm 80% Ur

WL White muscle B #& WLEE Phosphocreatine (U/L) 41.51£1.58" 52.87+1.98° 47.47+2.03° 43.46+2.12°
FLH Lactate (mmol/mg) 50.11£2.68" 53.85+2.14° 50.43+3.23" 58.71£2.45°
P 5 Glycogen (mg/g) 2.19+0.18" 2.59+0.12" 2.70£0.11° 2.430.08

1 #iBlood i % B Glucose (mmol/g) 1.83+0.08" 1.84+0.09" 1.96+0.07" 2.10+0.08"
FLE& Lactate (mmol/mg) 54.8622.46° 46.23+1.81°" 45.82+2.71" 58.34+2.48°
J% i B¥ Hydrocortisone (ng/L) 2125.37+142.83"  2390.15+66.19°  2417.85+111.76"  2643.85+133.33°

FFHELiver PE i Glycogen (mg/g) 2.53+0.15" 3.08+0.09 3.3240.14° 2.4540.13"

H: [F AT EARSE S BEASE A HU A (7] 22 57 52 2 (P<0.05)

Note: There are significant differences between values with different superscript letters in the same row (P<0.05)
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FLOW VELOCITY EFFECTS ON SWIMMING BEHAVIOR AND EXERCISE
PHYSIOLOGY OF JUVENILE ACANTHOPAGRUS SCHLEGELII

> CHEN Xiu-Can', HU Chang-Sheng', DAI Jia-Yue', WANG Xue-Feng"” and ZHANG Jing"’
(1. Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; 2. Southern Marine Science and Engineering

Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China; 3. Guangdong Provincial Key Laboratory of Pathogenic
Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China)

TANG Bao-Gui"

Abstract: Acanthopagrus schlegelii is an important fish species for enhancement and release in Chinese coastal waters.
To study its swimming behavior and exercise physiology can provide technical support for the offshore cage culture
and the feralization train of the enhancement and release. In this study, the swimming behavior (induced velocity, criti-
cal swimming speed, burst swimming speed and tail beat frequency), respiratory metabolism (oxygen consumption rate
(Mo,), cost of transport (COT), median survival time and suffocation point), physiology and biochemistry (lactate, gly-
cogen, glucose, phosphocreatine and hydrocortisone) of juvenile Acanthopagrus schlegelii [body length of (12.38+
0.69) cm, weight of (45.99+9.05) g] at 19°C and different flow velocities were measured in a loop test flume produced
by Loligo Systems in Denmark. The results showed that the relative induced velocity of juvenile Acanthopagrus schle-
gelii was about 1.42 BL/s (body length/s), the critical swimming speed was about 76 cm/s, and the burst swimming
speed was about 114 cm/s. The tail beat frequency had a significant linear positive correlation with the flow velocity.
The standard metabolic rate was about 332.25 mg/(kg-h), and the activity metabolic rate had a quadratic polynomial re-
lationship with the flow rate. The lowest oxygen consumption rate appeared at the flow rate of 3.6 BL/s, which was
about 185.65 mg/(kg-h). The cost of transport had a power function relationship with the flow rate, and the minimum
cost of transport appeared at a flow rate of 4 BL/s, which was about 66% U, flow rate. The shortest median survival
time of juvenile Acanthopagrus schlegelii was in the still water with about 3hours, and the longest median survival time
was under the low (1 BL/s) and medium (3 BL/s) flow rates with more than 10h. Suffocation point was about 0.34
mg/L in the still water, 1.70 mg/L at the low and medium flow rates, and about 3.18 mg/L at high flow rate. The con-
tents of glycogen and phosphocreatine in white muscle and liver were higher at the low and medium flow rates (20%
Uit 50% U,). The level of blood lactate was higher in the still water and at high flow rate, which correlated with oxy-
gen consumption rate, suffocation point change trend was consistent. In conclusion, it is recommended that the flow
rate for cage culture of juvenile Acanthopagrus schlegelii should not exceed 0.8 m/s, the appropriate training flow rate
should be within the range of 1.5—3.5 BL/s, and the acclimation time should be more than 2 weeks.

Key words: Flow velocity; Swimming behavior; Respiratory metabolism; Physiology and biochemistry; Juvenile
Acanthopagrus schlegelii
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