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WE: N T BRGNS iE 3 71 XL Re RACHMRFAE I 520, JEBUK 85 (Andrias davidianus)$11& R
SRR, 23 W E HAEA R AR T (0. 1% 4%A110%44 5 N 1R 7 % (Induced velocity). & & i iki#
J¥% (Burst swimming speed)fll 173512 3] J5 i 2 #E4((Excess post-exercise oxygen consumption, EPOC). 5t &
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Kb (Andrias davidianus)s5 )& T P4 (Amphi-
bia), A & H (Caudata), [ &7 £} (Cryptobrachidae),
KUt J& (Andrias), 723 E R AR 3N, B A
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SRAF KGR, FRHAE 2 NIER K IR T KAE . 3%
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(20.0+0.5)°C, JEHE A HAB B N10D 141, FHHR L)

HAE TR PR R L TR IR, S i B 5% A A
FEAF, ol SRR AR DLORRR K AR T W . YR
JAIA AN o

e I /INAHAL ) KB4 7R 80 2 (% 1), BEML 4>
AN, BISTRRAHE 1% &K FAHERAN 1% E
PITERL) S 4% 8 7K 4L (3R N\ 4% 74 5 1R A1
10%35% B 7K FHERN 10% 74 HFERD, /4202
G 10 Tk e 77l E, 7 o108 H T 775
g G AR ). T A R YR AE S g IR
/S 10k S 03 R O = Ml = 2 B N
P ARSI A (150 mL, B 1), R R 5
PRI A B AT IR B YL 1A
1.2 SKEHEE

% B TR F 2 & fF kIR B ZE wEYfe
JASASE R, A2 UE A 2 P AR I E 450 R4 K
fil 20y A A EE 43 0l 5 MEAH B 1% B KT (1% 4% 88
10% 74 51) (I FR I 4 d, W HEZH A R B, 3h)5
S FLHERS B AR A BT AR B 2 13077 (3.5 Ly
T8 S 1, & S E] K BE 94 em/s (29051546
T, bl/s), Bl I e 7 IR o 2 et g 7,
SN SRR A A £ f ah, FLE e AR R Bk E R,

“TK AR BN A Ui DK AR T A3 PR 7K AR B E O
P R AR P ] AR IE B HHEE R LS, KR FE
LLO.167 cm/s” FAIINISE FEE 455 8 1 A, 24 K5t 4)y ke 2 B3
B AR BT KR DY i S B A A LR A
RS B IEICIRAS I, LI R A B2 3 1% A
24 %5} JE% B it 3 (Absolute induction velocity), £ %}
TR VAL TR o3 DL K 85 4 A K A A i A R TR AR 0 JR%
Myt i# (Relative induction velocity). Fifi & 7K it &
(R gE — A2 K, K 4l iAok 3t 7 o IR 3 (15 B

R1 KRGFEE, FRMFRKE(EHEHRER)

Tab. 1 The body mass, body length and meal size of juvenile Chinese giant salamander (Andrias davidianus) in the present study

(mean+SE)

s
i hrIndex Control group

pOBGEE 1% 3% B K4

1% meal size group

4% K20

4% meal size group

10% 3% & 7K-T4H

10% meal size group

Ji#¥K BE 71Swimming performance

FEA $Sample (N) 10 10 10 10

{A EBody mass (g) 6.81+0.18 6.75+0.13 6.82+0.12 6.82+0.14
fA&-K:Body length (cm) 8.62+0.14 8.67£0.11 8.58+0.11 8.60+0.13
1T /K FMeal size (%) — 1.020.01° 4.01+0.01° 10.70+0.39"
EPOC

FEAFSample (N) 10 10 10 10

A #EBody mass (g) 6.96+0.36 6.83£0.31 6.87+0.23 6.99+0.15
A& Body length (cm) 8.50+0.16 8.67+0.16 8.69+0.12 8.68+0.13
7K T Meal size (%) — 1.01+0.01° 4.18+0.19" 10.32+0.29"

T EART RN A — AT BB 2 57 K (P<0.05)

Note: Values with different small letter superscripts are significantly different in the same row (P<0.05)
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Fig. 1 Circulatory closed respirometer
A, KFE; B EINENG C. BAEAL; D. WIEE; E. WFIRE;
FORAAGRK; G /AVKEE; H Kb R 4
A. tank; B. oxygen metre; C. feed hole; D. inner circulation tube;
E. respirometer chamber; F. dissolved oxygen probe; G. small
water pump; H. water-processing and temperature-controlling
system

TEVFUK B A i 97 B 20 CA_EAS P4k B2 K), BHER &
IR AE % R (1) A 6T % e K (Abso-
lute burst swimming speed), 5 46 5% 5 /& JiF vk B [
AR 5 411 A A2 A 12 DA 12 A B AERT 58 % T Dk ok P

(Relative burst swimming speed)[lo]o

FIBIE sh Al fE KN E ARSI R OK Hi5 4
A BAR 2 AE B ) A5 2R 2% P A e 450 Hh
K FH ¥ A 2 1 (HQ30, Hach Company)ill & . 1%
U 2 7 R, K50 40 A BBt s A i A 5 1 AR
W R 30 R A R 25 A8, Bl 5 BF 10800 22 11
SUH, I Tmin P PRSP I A (L B B TR) AR A0 )
R HIANFEAME [mg 0,/(kg-h)], 42 2 30min
BOMFEAME), “FIMENE N K A F LA .
P KGRI, F [RIRE 5 32 0% 220 % 10min 2
IR 657 (4 T P 30 )V S8 UM, P 3BMELE S s T PR
BRI, KREF ARG DL A H:

MO, = (S, — So) x V'x60/(Wx1000) (1)

i, MO, [mg Oy/(kg-h) A KRG 2, SN
Tmin 3 (8] 580 E BE I (R AR AL R, S 2 IR
B (A FER) A EAE R 2, VoA 2 43t
F(0.15 L), 60960min. WK~ KH LA 7R E (g).

TEFR IR A 2 2 &5 5, 7575 30 2% 1A AR
I 7 30 I MR A v 5 K 57 4 A A N % £ UK
(1% 4%5%10% 7R H) [ F2 il d, S AR &
W), anja e FARHEER . IESI 2 20min(20 M FEA
18), “FMEAE R KBLZ R 713532 3 5 AR U 2%
BERF, 1% 4%8010%5 & K- F AR U ZH A HF
ARUFIGEAE o B 5 K 5 2 A AR A B SON
WY 1838 535 B (KR 10 cm, ELAA50 cm)H, il id
BT T T AL K 5 ) 4 JR2 5 0GR L PR Fr ks

3y, BUEH2min P IE B s iR, I Wbz v Xt
T 95 M Al G B S SISO, o i S ST R R 5
AR TECE] R il SE JvRis B fE FE AR, SE S
SE60min(i1 560 M FEEE) -

EPOCHH RS HUH 5 i 114K % (Rest metabolic
rate). 123 HI X (Pre-exercise metabolic rate).
1238 J5 R 1§ {8 (Peak post-exercise metabolic rate).
g AE LE % (Factorial scope). 1R} 14 & (Increment
of metabolic rate). i3] f5 Yk & I} [A](Duration) Al
#=FESA(EPOC magnitude). /NS E BRI E 774k
Z WHRZHE (1, 14].

1.3 Zitah

AR S5 BT A HH s B S 24+ A5 1 1% (mean+SE)
R, B HExcel 2003347 # M1t 5 5 K HISPSS
1705347 Ge it 73 b . TREACEX T S 815
iR FH B PR R 75 22 3 IT(ANOV A), 4 72 57t {2 2 1)
#4722 E R (LSDZ), &3 MK #l e v P<0.05.

2 4

2.1 RERURIEMFE L FFKIRE

TR KT K5 )y s 4 56T SR S I3 (3, 36=0.340,
P=0.797). FHXTEPLRIE(F3, 30=0.413, P=0.745).
256 B R UK (F3, 39=0.342, P=0.795)FIH X} 5
BRI P (F 3, 30=0.380, P=0.768) &l 547 12 3 1k 5
WAl (& 2) 0 KO0 4 A 248 Xof Jo8 I 3L Tl AP AT J R Y7 ek
SEIME 5 0N21.94 cm/sH2.56 bl/s, K5 4 46 %)
T R VK T FEE AR %of 2 O T ikt B~ 504 43l A
33.50 cm/sA13.90 bl/s(F 211K 3).
22 HimEmnEAE

P KSR 4l AR Dy saia g i, HAR 2R # R
T A B EAE, Bl 120 BRI 2 7 v 18 B iR
KB 4). BT 4R B4 A4 i 1 AR 28 2 [a) #4
To L V2 5 (F3, 30=0.157; P=0.924; % 2F11& 5).
B B KT B3G n, KR 4l A I8 3 iR 2R AR
FWN(F3, 30=39.446; P<0.001), 4% &K F4liz
BT B T 1% & KA i, (H
R FELT 10% 8 B /K TR 2 El 5). 4%F
10%% B K-V Hiz ) G ARG (e To B & 1 22 =, B
FE N 3 TR R R 1 %8 (/KT 2H(F s 30=8.474;
P<0.001; % 2F11& 5). 4% /KP4 2R 0 &
BEMTWHEA, HEEERT10%HEKTF4H
(F3, 30=5.868; P=0.002; % 2RI 5). 1%. 4%
10%$5% B 7K ZH U f B A2 A 2 2 AR T % B4, 4% 0
10%35% B 7K T 2 I AE LU 2 2 8] TG B 35 1 22 3 (3 30—
19.863; P<0.001; % 2F11& 5). 4% /K F4iz5)
Ji PR S5 ) S 3 /N T B2 AT 1 % 8% B /KP4, H
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e E R T 10% 55 B 7K T 2H(F3, 30=25.190; P<0.001;
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P=0.001; % 2H1[ 5).
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3.1 BRIKFEX KGR RN TR FI 5 & FIKIE
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Tab. 2 The effect of meal size on several variables related to
swimming performance and EPOC in juvenile Chinese giant
salamander (4ndrias davidianus) based on the results of One-way
analysis of variance (ANOVA)

EEELIY B
Index Significance

Zaxct NI Absolute induction Fy 1-0.340: P0.797
velocity .

XA B i # Relative induction
velocity

245t 5 R KGE FE Absolute burst
swimming speed

AEXT 5 & VK HE FE Relative burst
swimming speed

i 1L AT K Rest metabolic rate

Z TSR Pre-exercise metabolic
rate

123 JE A4 {E Peak post-exercise
metabolic rate

A F M B Increment of metabolic rate F; 30=5.868; P=0.002
VA bL 3 Factorial scope F;.3=19.863; P<0.001
1B3))J5 Pk Z I ] Duration Fj3,35=25.190; P<0.001

F3,39=0.413; P=0.745
F3, 39=0.342; P=0.795

F3.39=0.380; P=0.768
F3.35=0.157; P=0.924
F;, 35=39.446; P<0.001

F3 39=8.474; P<0.001

1 E#E4 EPOC magnitude F;. 39=6.596; P=0.001
bz 3
E3E
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SES
jﬁ{?ﬂ 22
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=)
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Control 1 4 10
Ak
Meal size (%)
-
pres g =
'fi—s L 2
o
Heg o
mED
Control 1 4 10

AR
Meal size (%)

2 FRE KT R A s S IR P (T BB AR v R,
HEAL=10)

Fig. 2 The effect of meal size on induction velocity in juvenile Chinese
giant salamander (4ndrias davidianus; mean+SE, n=10)

40
o 2 T
g
=2 30 ¢
2 5
SN 5 0
R
é}%—z o
RZE
= << g 10
0
Control 1 4 10
Kk
Meal size (%)
5 -
w2,
ER
£2% 3|
?%g &
wE2at
bl
'~ g
E o517
0
Control 1 4 10
Ak

Meal size (%)

B3 SR 7K ST X R 4 A 2 i e ik e B PR 5 i (P B804 A 1
%, FEA%=10)

Fig. 3 The effect of meal size on burst swimming speed in juvenile
Chinese giant salamander (Andrias davidianus; mean=SE, n=10)

N RS R AR R KRS B BOAT O SR, G
PR PR g TR VRS, A 7K M) T8 it A g A P Ao O 4
B HHET ™ DB 3 B K Bk AT
NBEAT RE PERIR, (H H VKRR B 58 BRI FEIE R W
B AR R B, KRR A AR L
21.9 cm/s(£12.6 bl/s)t A4 KB W) B A0 kAT
N, FF BB KV AR KBy 1A SRS Tk 7 A
B E RS, N LR R RIS A R — PRI fER
i G S b DR 4 B 38 B TSOUR A B I i R A S
KGRI AR B)IX L VKRR AR 24 T LA &

PRI SH D A AR I BT AR TR AR K v, FLE K RE
3508 B A8 SO 3 BT B ), B2 F
BRIz ™ Y U e ek B R
I #EE (Pelophylax nigromaculatus) KW4E(Hyla ch-
rysoscelis) 15§ 77 3 (Rana sphenocephala)ifHis i)
B RFEVKGE BE 3 21797 12115 em/s (43l £
16+ 178115 bl/s)™> >, 17 45 77 ki (Cynops orien-
talis )RR FR) B R VK BE 2404925 em/s (216 blis) ™Y,
ARHIF TR I, KGR XS T Rk L2933 em/s
(Z94 bl/s). HLZRM, HIEL T T R IR 3 M 4h
&, A MR AR B A (0 26 0 i ik 5E 0 AN
BRI A UK B 70, X W] e HAH R B AR G
Ko

PLAERIE AT A B, 7 75t (Silurus meridionlis)IF)
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K 4 SR CE R KB4k 779538 3 J5 AR SR RS2 (R 4
#=10)

Fig. 4 The effect of meal size on excess post-exercise oxygen con-
sumption (EPOC) response in juvenile Chinese giant salamander
(Andrias davidianus; n=10)

[ 535 ¥k 3E B (Critical swimming speeds) 7E K5 &
RV(2%—8%) T BT i 3 A2 Ak, (HAE B B K
F(12%—20%) R FF. BT R ihghfafE12%—
20%3% B KPR Bk B AR U B 20 Dy e LR AR
474, B TEE N Bt KT T iUk RE T A B
AT g5 HE s I AL B AR . A AR R
B, KM 2 1 e S e DK A 32 B R R KT
(1%—10% 1A 5L (¥ 2 2 52000, 1 s FL AL Zh R JF R
X BNE 77 AR 2 BRI, IX AT RE S H B
37 AL AR BE 07 R (BB ARG E AU AR A
R 2,205 ", X R B 5 B (Clenopharyngo-
don idellus)F1 T [C 3% 1 4. (Pelteobagrus vachelli)
T 7T 45 SRARL, X P P B AR 1 %—8% it FT /KT

T PRI AR T R AR A, HR R B A
A1 43 R B AR 1.5 02245 . KRR 4h
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FT RS 0 2R 1 R, 4 e RiE
B Ty Be [F] i BEAT I, AT bu”jfﬁ'uﬁﬁ$¢$|§lﬁ’~]ﬁi§11‘i‘§
Ao R B In , ShP AT R s A) 2 s
R, Bt [F) 5 2 HOH AL FIIZ Z) Th e, o5 —Fhig3e
SR, SR BRI R R A AL, I e 4

o § 200 M}-% o 200
== 150 BEES1s
5a% St c
§g5~1oo E_%%IOO d
Q Q
+ el
gz O[] ﬂ Bas Gl
~ Control 1 10 e = Control 1
i‘ﬁé‘-ﬂﬂz &~ ﬁ'§7k$
Meal size (%) Meal size (%)
.2
2 2
me=s 2=
Qg&é o 200 D\H%j}‘zoo
ggélSO Em&ngO
ag%wo f{f‘aal a ab b
if e JZEEi] 10 [
B2 0 *5?
1y §«§ Control 1 ‘g = Control 1 10
s %%qu . ﬁﬁ7k$
& Meal size (%) Meal size (%)
[ =~
2 31, —= 60
v © E’"‘ 50
£3 bobe o wmE g
F XE 30
=0 1 oE 20
£ ) ] SE 0 H
* Control 1 4 10 7 TControl 1 4
KT TR
Meal size (%) Meal size (%)
2 40

lﬁﬁcé 30 2 ab b
ﬂgo 20 H H H ¢
=32 10 H

0
Control 1 4 10

Bk
Meal size (%)

EP

K5 Bk T K ghk /g 12 3 5 A 2 5 s ma (T

{EEFRHER, FEA%=10)

Fig. 5 The effects of meal size on several parameters of excess
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Chinese giant salamander (Andrias davidianus; mean+SE, n=10)
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MEAL SIZE ON SWIMMING PERFORMANCE AND EXCESS POST-EXERCISE
OXYGEN CONSUMPTION IN JUVENILE ANDRIAS DAVIDIANUS

HOU Qi-Miao, FU Shi-Jian, HUANG Ti-Ji and LI Xiu-Ming

(Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal
University, Chongqing 401331, China)

Abstract: Feeding and locomotion are two important physiological activities that occur simultaneously in life history of
Andrias davidianus. Their exercise behavior varies according to different meal sizes, which is the result of long-term
evolution and adaptation to different living environments. In order to investigate the effects of meal size on locomotion
ability and energy metabolic of amphibians, we selected the juvenile Andrias davidianus as experimental subjects. We
measured the induction velocity, burst swimming speed and excess post-exercise oxygen consumption (EPOC) at dif-
ferent meal sizes (0, 1%, 4%, and 10% of body weight). The induction velocity (20.78, 21.52, 23.67, 21.79 cm/s and
2.4,2.49,2.77,2.56 bl/s, respectively) and burst swimming speed (32.65, 32.92, 35.42, 33.02 cm/s and 3.80, 3.81, 4.15,
3.85 bl/s, respectively) of juvenile A. davidianus were not significantly different among different meal sizes. With in-
creasing meal size, the pre-exercise metabolic rate [66.88, 82.51, 95.57 and 106.32 mg O,/(kg-h), respectively] and the
peak post-exercise metabolic rate [148.21, 155.08, 166.93 and 167.63 mg O,/(kg-h), respectively] increased gradually
and were significantly higher in the 4% and 10% meal size groups than those in the control group (P<0.05). The incre-
ment of metabolic rate [81.33, 72.57, 71.36 and 61.31 mg O,/(kg-h), respectively], factorial scope (2.26, 1.89, 1.76 and
1.58, respectively), duration (55.00min, 49.60min, 38.80min, 32.10min, respectively) and EPOC magnitude (27.48,
23.68, 21.42 and 15.36 mg O,/kg, respectively) declined progressively, and these indexes in 4% and 10% meal size
groups were lower than that in the control group (P<0.05). Our results suggested that the swimming performance of ju-
venile 4. davidianus is not affected by feeding. These movement characteristics of this species should be fully con-
sidered in the practice of habitat protection and release in wild. The maintenance of swimming ability, the increase of
aerobic metabolism and the shortening of recovery time after feeding may be beneficial for juvenile A. davidianus to
hunt and escape from predators, resulting in better adaptation to the complex stream habitat and improved survival fit-
ness.

Key words: Meal size; Induced velocity; Burst swimming speed; Excess post-exercise oxygen consumption; Andrias
davidianus
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