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基于Point Transformer 方法的鱼类三维点云模型分类
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摘要: 为实现对不同鱼类的精准分类, 研究共采集110尾真实鱼类的三维模型, 对获取的3D模型进行基于预处

理、旋转增强和下采样等操作后, 获取了1650尾实验样本。然后基于Point Transformer网络和2个三维分类的

对比网络进行数据集的分类训练和验证。结果表明, 利用本实验的目标方法Point Transformer获得了比2个对

比网络更好的分类结果, 整体的分类准确率能够达到91.9%。同时对所使用的三维分类网络进行有效性评估,
3个模型对于5种真实鱼类模型的分类是有意义的, 其中Point Transformer的模型ROC曲线准确率最高, AUC面
积最大, 对于三维鱼类数据集的分类最为有效。研究提供了一种可以实现对鱼类三维模型进行精准分类的方

法, 为以后的智能化渔业资源监测提供一种新的技术手段。
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鱼类是我国重要的蛋白质来源之一, 在世界各

地的粮食安全和营养战略中发挥着关键作用
[1]
。因

此作为重要渔业资源的水生态系统受到了高度关

注, 对渔业资源进行监测的重要性不仅在于了解鱼

类的种群动态、空间分布格局, 还会影响水生态系

统的调控策略, 例如提供需要进行保护及恢复的渔

业区域信息, 保证渔业资源的健康发展, 以供人们

进行后续的渔业捕捞及保护
[2, 3]

。

目前水下监测鱼类的主要手段是利用水下摄

像机来获取鱼类的视频数据, 并对监测到的鱼类进

行分类识别, 基于视频的方法不仅能够克服人工调

查的局限性(深度、时间)还能够提供一个永久存在

且能够反复分析的数据
[4]
。但是该方法与传统的鱼

类分类方法一样, 也是通过对鱼体的大小、形状和

颜色等视觉特征进行区分
[5], 分类结果的准确性主

要依靠鱼类学专家及该专业的受培训人员的经验,
这仍是一项要求很高且耗时费力的工作

[4], 因此, 快

速、精准的对获取的鱼类数据进行分类具有重要

意义。

深度学习模型具有很强的学习能力, 能够从环

境变化和变化不敏感的物种独特的视觉特征中获

取更深层次的特征信息, 因此已广泛应用于水生动

物的物种分类。目前多个网络模型已经在公共数

据集 LifeCLEF14 和 LifeCLEF15[6—8]
得到验证, 分

类准确率达到90%以上
[9]
。大多数学者倾向于研究

二维图像的鱼类分类, 主要是因为公开的鱼类图像

数据集丰富
[9—12], 且二维图像数据更易获取, 数据

量足够庞大
[13]
。但是在遇到种类特征相似及背景

信息复杂时, 效果并不理想
[1, 9]

。而且在不受限制

的自然栖息地中对活鱼的识别分类也存在根本性

的挑战。与多数的水下监测环境一样, 水下监测时

难以避免由于光线的快速衰减、鱼体的非横向视

图或弯曲的身体形状, 导致了许多数据的不确定性,
在这种情况下, 用于对象识别的常见图像特征通常
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会出现一定程度的缺失或者遮挡, 这不可避免地降

低了对于鱼类的识别性能
[14, 15]

。因此, 迫切需要开

发新监测模式来对鱼类实现更精准的识别, 分类以

提供准确、高效、可重复和具有成本效益的水生

态系统监测结果。

随着三维模型不断应用与发展, 给现有的监测

方法提供了一个新的途径。三维(3D)模型作为计

算机视觉和计算机图形学领域的重要发展方向之

一, 其应用前景正在不断增加
[16]
。在现有的研究中,

由于三维数据较为缺乏以及应用场景较少等限制,
对于三维数据处理及应用主要基于手工制作的特

征。随着三维数据的采集设备不断更新 , 各种

LiDAR类型、3D扫描仪及RGB-D相机等设备变得

更易获取, 弥补了3D模型在数据量上不足的缺点
[17]
。

目前有关3D模型分类的数据类型主要分为基

于点云、多视图
[18]
及体积

[19]
等方法, 其中点云数据

因其可在3D空间中保留原始几何的信息, 受到了多

种应用场景的青睐
[20]
。并且现在已经有很多三维

模型应用方面的尝试集中在 3D 形状表示上, 所提

出来的方法也是成功用于多种物体的分类和检索

等领域
[3, 21]

。Feng等[16]
提出了一种名为MeshNet的

网格神经网络, 能够从网格数据中学习各个3D模型

的表示, 在ModelNet40数据集上
[21], 获得了91.9%的

准确率。Qi 等[22]
提出的pointnet网络直接在点云上

进行学习, 并且利用多层感知器(MLP)和对称函数

解决了点云数据无序性的问题, 在ModelNet40公共

数据集上进行了验证并取得了89.2%分类准确率
[23]
。

Maturana等[19]
提出了一个体积占用网络(VoxNet)以

获得稳健的3D形状分类。虽然这些分类算法在合

成数据集上取得了可喜的结果, 但是由于合成数据

集上训练的分类模型无法很好地应用到真实世界

的数据集上, 所以对真实世界的3D模型进行分类仍

具有挑战性。

目前对真实世界生物个体的3D模型分类应用

研究有很多, 但是大部分只针对人体, 例如人体3D
模型的形态分类

[24]
、3D人脸识别

[25]
及人体姿势估

计与动作分类
[26]
等。因为在获取3D模型的难易程

度上人与动物是完全不同的, 首先是不同物种之间

的形状差异远大于人类, 例如鱼类身体表面覆盖了

鳞片, 兽类全身具毛发等特征。其次在认知程度上,
人类是特别容易相处和合作的主体, 让野生动物配

合实验人员进行模型扫描是难以进行的
[27]
。鱼类

也是一样, 目前针对真实动物个体的3D模型研究还

停留在重建良好且接近真实个体3D模型层面。

目前基于除人类以外的动物三维模型的重建

与应用技术已经在多个种类上取得了成功
[27—33], 但

是从三维角度将深度学习应用于分类方面的研究

还很少, 而且目前也没有与鱼类相关的真实三维模

型数据集。因为真实的三维模型数据在获取的过

程中还易受到背景噪声污染和不同程度的缺失甚

至遮挡
[20]
。所以目前在分类方面所使用的三维数

据集, 其模型大多都是合成的, 这也导致了众多的

三维模型分类网络在真实的三维模型数据集下的

分类效果也有待重新评估。

在此背景下, 本研究提出了一种基于多头注意

力机制的真实三维鱼类模型分类方法, 基于Point
Transformer算法对鱼类的三维模型进行深度学习

和训练, 通过对自建的鱼类三维模型数据进行预处

理与验证, 能够对5种鱼类的三维模型实现精准分

类, 为未来的渔业资源的监测与保护开拓了一种新

的途径。 

1    材料与方法
 

1.1    实验对象

本研究使用的鱼类三维模型均采自中国安徽

省巢湖市巢湖流域的鱼类 , 模型采集的时间为

2021年2月14日—2023年6月10日。从所采样本中

筛选了5种共110尾鱼类三维模型用于分类研究。 

1.2    鱼类三维点云数据的采集

本研究所采用的鱼体扫描仪器是武汉中观科

技公司的智能式蓝色激光三维扫描仪 , 型号为

RigelScan。为了方便本研究更好的进行, 我们自行

设计了一个便捷的鱼类三维模型采集装置(图 1),
该装置主要由载鱼设施及操作台两个部分组成, 其
中平台长1.1 m, 宽90 cm, 载鱼设施靠滑轮来移动,
高1.5 cm。模型获取的操作流程: 首先是选择体表

完好, 无损伤的鱼固定在载鱼设施上, 并在鱼体表

现均匀贴上扫描贴片, 然后使用三维激光扫描仪对

扫描鱼体进行自上而下360度的全方位扫描, 同时

在扫描期间要控制扫描仪器鱼体之间的距离保持

在30 cm左右, 在扫描完毕后, 利用扫描仪自带的

ZGscan 2.0软件, 将获取的三维鱼类点云进行保存

并导出。利用自研的采集平台能够有效减少鱼体

受到干扰, 提高了模型获取的效率。 

1.3    鱼类三维模型的预处理及数据集的构建

在本研究中, 所有的模型在使用前会人为进行

标注。因为目前得到的模型是一种无序的、离散

的三维数据类型, 通常包括三维坐标(X, Y, Z)及其

他属性(如颜色、法向量等), 并且各个种鱼类的三

维模型因为体长、体重以及体宽不同, 所以组成模

型的点和面在数量上也存在差异。因此, 在进行鱼

类三维模型分类实验之前, 需要对点云数据进行预
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处理, 主要包括数据降噪、降采样和数据增强等步

骤。对模型进行处理之后, 按种类汇总成一个真实

的鱼类三维模型数据集(图 2)。
数据降噪　　在三维鱼类模型的获取过程中,

会导致扫描仪器将不属于鱼体部分的点云数据也

扫入三维模型中, 所以获取的鱼类点云数据常常存

在噪点、离群点和重复点等问题。因此利用软件

对数据清洗等步骤可以去除这些干扰因素, 提高分

类算法的鲁棒性和准确性, 本实验对于模型的预处

理主要包括两个步骤, 首先通过利用扫描仪器自带

的ZGscan软件能够对获取的模型进行检查, 并去除

扫描过程中与鱼体无关的杂点; 其次在制作鱼类三

维模型数据集的过程中, 我们将所有模型依次导入

MeshLab软件, 通过软件的模型可视化功能对鱼类

点云数据进行二次杂点去除, 以消除因其他区域的

点导致实验模型结果不精确的问题(图 3)。
降采样　　在获取的鱼类三维模型中, 由于点

云数量庞大, 模型复杂度高, 导致在训练过程中消

耗的计算资源较多, 速度慢。虽然高度详细的模型

能够保持令人信服的真实感, 但是并不总是需要此

类模型的全部复杂性, 并且使用模型的计算成本与

其复杂性直接相关
[34]
。因此, 本研究希望通过降采

样技术来减少降低模型表面的点的数量来简化模

型, 这能够降低模型的存储空间、减少计算资源的

消耗及提高三维鱼类模型的训练效率。

(
v2,v j
)→ v̄

本实验我们基于二次误差度量(Quadric Error
Metric) 的增量式方法来简化鱼类三维模型的网格

结构, 利用Garland和Heckberts提出的边缘折叠原

理, 将一个顶点、两个面及一侧的线被迭代删除
[34]

(图 4)。由于该简化算法是基于顶点对的迭代收缩,
本文定义: 边缘折叠的顺序取决于量化

点到面的距离误差。如果将一组平面与每个顶点

相关联, 则每个顶点的误差定义为到所有平面的距

离平方和。因此该顶点所产生的误差定义为: 

 

图 1    鱼类三维点云数据采集装置

Fig. 1    Fish 3D point cloud data acquisition device
左. 现实点云数据采集装置; 右. 点云数据采集装置CAD平面图

Left. realistic point cloud data acquisition device; Right. CAD plan of point cloud data acquisition device

 

达氏鲌Culter dabryi 蒙古鲌Culter mongolicus 翘嘴鲌Culter alburnus

草鱼Ctenopharyngodon idella鲫Carassius auratus

图 2    鱼类三维点云数据集的制作

Fig. 2    Fish 3D point cloud dataset production
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∆(v) =
∑

p∈planes(v)

D2(v) =
∑

p∈planes(v)

vT (Kp)v

= vT

 ∑
p∈planes(v)

Kp

v (1)

∆ (v1) = ∆ (v1)+∆ (v1) ∆(V̄)

式中, 平面 (V) 表示在该顶点相交的所有三角形。

并且在收缩过程中, 所产生的收缩误差我们定义

为 : , 其中 是收缩后产生

的顶点误差。

数据增强　　由于本实验所使用的数据集为

自建数据集, 其自身的数据量对于深度学习模型的

泛化性有一定的限制。所以为了保证实验效果, 我
们对已有三维模型采用旋转的增强方式进行扩增,
如图 5所示本文定义了3个旋转轴axis_X、axis_Y、

axis_Z, 并且设置旋转轴序列旋转顺序。然后, 对于

每个旋转轴 , 旋转角度为θ, 步长为20, 其中β ϵ(0,
360)。本文将绕每个轴的三维点旋转表示为矩阵

形式, 其公式如下:

RZ =

 x′

y′

z′

 =
 cosθ −sinθ 0

sinθ cosθ 0
0 0 1


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y
z


(1) 绕Z轴旋转

(2) 绕Y轴旋转

RY =

 x′

y′

z′

 =
 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ


 x

y
z



RX =

 x′

y′

z′

 =
 1 0 0

0 cosθ −sinθ
0 sinθ cosθ


 x

y
z


(3) 绕X轴旋转

模型经过增强后, 我们将旋转后的顶点和面信

息导出为新的模型文件, 以此实现模型数量上的扩

增。扩增后的鱼类模型数量为1650个, 按照9﹕1的
比例划分训练集和测试集。 
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图 3   鱼类三维数据清洗示例

Fig. 3   Example of fish 3D data cleaning
A图代表鱼类数据清洗之前; B图代表清洗后的模型

A represents the fish data before cleaning; B represents the model
after cleaning
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图 4   边缘收缩: 突出显示的边缘收缩为单个点。阴影三角形

将在收缩中并被移除

Fig. 4   Edge contraction: the highlighted edge is contracted into a
single point. The shaded triangles are removed during the contrac-
tion
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图 5   鱼类三维模型数据增强过程示例

Fig. 5   Example of data enhancement process for a fish 3D model

 

输出：草鱼、蒙古鲌、鲫...

局部特征集全局特征集
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行式前馈网络 (rFF) 行式前馈网络 (rFF)

自多头注意力机制 自多头注意力机制

分类模块

鱼类三维特征表示

子空间局部特征局部特征

 
图 6   基于Point Transformer的三维鱼类分类模型

Fig. 6   A 3D fish classification model based on Point Transformer
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1.4    鱼类三维点云分类模型

本文主要探究Point Transformer算法对鱼类三

维点云模型进行分类应用的效果。该算法利用基

于多头注意力机制的特征排序模块(SortNet), 能够

将目标鱼类输入的局部和全局特征联系起来, 并显

示鱼类点云模型的形状信息
[35]
。网络模型如图 6所

示, 主要分为3个部分: (1)提取不同子空间的局部特

征, (2)全局特征的生成, (3)局部–全局注意力。

P ∈ PN×D P =
[platent

1 , · · · , platent
N ∈ RN×dm pi ∈ P

si ∈ R

⟨pi, si⟩Ni=1

提取不同子空间的局部特征: SortNet作为该模

型的主要分支, 通过学习不同局部特征的分数来对

其进行排序, 从而获得在不同子空间内排列不变的

局部特征。如图 4所示, SortNet 通过行式前馈网络

(rFF)接收原始点云  和潜在特征表示为

。为获取每个  之间的

空间关系, 我们利用额外的自多头注意力机制进行

操作。随后又通过行式前馈网络将输入的鱼类点

云特征转化为一维数据, 给输入的Pi创建一个可学

习的标量分数 , 其中 , 其中由于自多头注意层

而结合了空间关系。我们现在定义一个对, 将相应

的分数分配给每个输入点 。并且令 Q 为
降序排列的一个集合｛S1>S2>S3....SN｝。通在输入

的鱼类最初的原始点云数据中选择 K ≤ N , 且分

值较高的点进行排序 , 获得的结果我们定义为 : 

Q =
{
q j, j = 1, . . . ,K

}
(2)

q j =
⟨
q j,s

j
i p

j
i

⟩K
J=1

pJ
i ∈ P s1

i≥ . . .≥sk
I式中,  , 因为 所以 。

该操作利用top-k操作来搜索 K 个最高分数Si并选

择相关的输入点Pi。在如何获取鱼类三维模型的

局域性特征上, 是利用Qi等[36]
所提出的球查询搜索

方法, 对局部特征进行编码, 这里我们定义: 

g j ∈ Rdm−1−D, j = 1, . . . ,K (3)

g j

dm

s j
i g j

p j
i

在得到编码结果后, 我们利用分组点 的特征

维度将局部特征向量的结果与模型纬度 一一对

应。分数 及来自分组层的局部特征 被连接到相

应的输入点 , 将分数的计算纳入优化问题中, 并
将局部特征编码到所选点。因此, 我们将获得了局

部特征向量定义: 

f j
i = pj

i⊕ sj
i ⊕gj, f j

i ∈ Rdm (4)

此外, 由SortNet 网络网络结构输出的局部特

征数据则被定义为: 

FL
m = { f

j
i , j = 1, · · · ,K} (5)

FL
m此时 是有序的, 但是为了获取更多的子空间

的局部特征, 该模型采用M个独立的SortNet结构,

获得由M个特征集组成的局部特征集, 定义为: 

FL = FL
1 ∪ · · ·∪FL

m,F
L ∈ RK·M·dm (6)

N′ < N
N′×dm

全局特征的生成: 利用集合抽象多尺度分组

(MSG)层的方法从鱼类三维点云数据中提取鱼体

的全局特征 , 首先通过最远点采样(Farthest Point
Sampling, FPS)来选取整个鱼体的中心点云, 此时

点云的数量为 点
[36]
。接着利用相邻点获得

维度为 的全局特征。但是, 此时的全局特

征是无序排列的, 还需要进行排序和池化操作。

FL FG

(Aself)

ALG ALG

d′m < dm

ALG

局部–全局注意力: Point Transformer将局部特

征集( )和全局特征集( )联系起来获取鱼类点

云数据整体形状信息。在获取局部和全局特征集

之后 , 自多头注意力机制 输出一个维度为N×dm

的矩阵, 但是此时的全局特征还是无序排列的, 而
利用交叉多头注意力层通过对局部特征进行评分,
这样全局特征就具有了一定的顺序。鱼体三维模

型的整体特征与局部特征也联系起来, 称为局部全

局注意力( )。此外, 本方法通过将 多头注意

力机制中的最后一个行前馈层亏的特征纬度降低

至 , 以此降低模型鱼类计算过程的复杂程

度。因此, 本文对 定义为: 

ALG : RK·M·dm ,RN′×dm → RK·M·d′m (7)

此外, 在评估模型在训练过程中受到的损失时,
我们选择使用交叉熵损失函数作为分类任务的损

失函数。计算公式定义为: 

LCE = −
m∑

i=1

n∑
1

P
(
yi j
)
log2

[
Q
(
yi j
)]

(8)

式中 , LCE为交叉熵损失函数 , n为分类的类别数 .
P(yij)代表yi类对应的真实标签, 也就是n个类别的预

测概率, Q(yij)代表yi类的预测值。 

1.5    评价指标

将划分为训练集和测试集的鱼类三维点云模

型输入训练完成的分类模型后, 并输出所有种类鱼

类的分类结果。实验选择总体样本分类准确率(Over
accuracy)、平均准确率(Average accuracy)、单个类

别的准确率(Accuracy)和F1-score对模型的分类效

果进行评估, 同时利用模型训练过程中的ROC曲线

来评估本实验分类模型性能, 计算公式如下: 

Acc (%) =
TP+TN

TP+TN+FP+FN
(9)

 

F1 = 2 · precisiom · recall
precison+recall

(10)

式中, TP表示将正类预测为正类数; TN表示将负类
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预测为负类数; FP将负类预测为正类数误报 (Type
I error); FN将正类预测为负类数。 

2    结果
 

2.1    实验环境

本实验采用 Windows 10作为实验环境配置的

操作系统, 其中CPU 为 Intel (R) Xeon (R) Gold 6248
RI7-7700@3.00GHz; GPU 为 NVIDIA GeForce RTX
3090Ti。分类网络框架是Python语言编写并基于

Pytorch 建立三维模型分类网络框架。对三维模型

进行处理的平台使用MeshLab2022。 

2.2    实验参数设置

实验中采用“RangerVA”作为模型训练的优化

器, Batchsize设置为11个。网络的初始学习率设置

为0.001 , Dropout丢弃率设置为0.5, 最后设置训练

的总轮数为500 epoch。 

2.3    分类实验

本文采用总体准确率(Overall accuracy, OA)、
平均准确率(Average accuracy), F1分数作为各个分

类模型的性能评价指标。通过准确性指标计算模

型在整个数据集中做出正确预测的次数, 来确定不

同模型对三维鱼类模型的分类效果。

(1)鱼类三维模型分类结果

为了验证Point Transformer 在处理真实复杂世

界数据的表现能力 , 本文在自建的鱼类数据集上进

行实验, 实验中输入模型的点云个数为2048。对比

实验结果见表 1。目标模型Point Transformer对5种
鱼类三维模型取得了91.9%的总体准确率、91.7%
的平均分类精度, 整体准确率比Meshnet网络高了

10.5%, 五种鱼类的平均准确率高了11.7%, 同时比

Pointnet网络的整体准确率高了16.9%, 平均准确率

高了18.6%, 与其他模型进行对比中  Point Trans-
former 模型的效果更优。

此外在利用F1-score对模型的整体性能进行评

估时, Point Transformer算法的F1分数也是3种方法

中最高的, 为91.9%, 表明了Point Transformer算法

的优越性。

对单个类别的分类精度对比上, 如表 2所示,
Point Transformer模型有3种鱼的分类精度都超过

了90%, 分别是草鱼、蒙古鲌和鲫。Meshnet只有

1种鱼的分类准确率达到了90%以上, 分别是草鱼

和鲫草鱼识别率最高为87.9%, 鲫为88.7%, 最差的

为蒙古鲌, 总体的识别准确率为68.7%。此外, 准确

率最低的3种鱼分别为达氏鲌、蒙古鲌和翘嘴鲌,
尤其是蒙古鲌和达氏鲌, 因为都属于鲌类且表型性

状相近, 所以易产生次优的结果, 最容易被混淆, 识
别误差率高。

(2) ROC曲线比较与训练过程的可视化评估

本实验对鱼类3D模型进行分类的模型性能评

估, 采用了正确识别概率(PTp)和错误识别概率(PFp)
来衡量, 其中绘制的Roc曲线在虚线的左上方, 说明

3个模型对于5种真实鱼类模型的分类是有意义的,
并且越靠近左上角的ROC曲线, 其分类的准确率就

越高, 并且ROC曲线的AUC值也能够描述不同分类

模型在鱼类3D模型上进行分类的能力, AUC值越

大的分类器, 正确率越高。

通过对3种算法分类结果的ROC曲线及AUC值
对比分析(图 7), Point Transformer 模型的ROC曲线

最靠近左上角, 且AUC值最高为0.96, 所以具有更

好的分类性能和鲁棒性。Meshnet和Pointnet的ROC
曲线虽然均靠近左上角并且高度接近, 但是在AUC
值上Meshnet为0.89>Pointnet为0.84, 所以Meshnet

 

表 1    在鱼类数据集上的实验结果

Tab. 1    Experimental results on fish dataset (%)
算法

Algorithm
输入

Import
模型点数

Model points
模型个数

Number of models
总体分类准确率

OA (%)
平均准确率
m-Acc (%)

F1分数
F1 score

Meshnet 面片 2048 550 81.4 73.1 82.7

Pointnet 点坐标 2048 550 75 80 76.4
Point transformer 点坐标 2048 550 91.9 91.7 91.9

 

表 2    在五种鱼类三维模型上的实验结果

Tab. 2    Classification results on a three-dimensional model of five fish species (%)
算法

Algorithm
草鱼

Ctenopharyngodon idella
达氏鲌

Culter dabryi
蒙古鲌

Culter mongolicus
翘嘴鲌

Culter alburnus
鲫

Carassius auratus
Meshnet 95 74.4 85.4 60 85

Pointnet 71.1 89.8 27.8 88.9 87.9

Point transformer 97.6 88.8 92.9 85.7 93.3
over-accuracy 87.9 84.3 68.7 78.2 88.7
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模型的分类效果次于Point Transformer, 且Pointnet
模型性能最差。

图 8可视化了不同分类模型对3维鱼类数据集

进行分类的准确率损失情况, 可以看出随着迭代次

数的增加 , 模型分类准确率的 loss值呈现 :  Point
Transformer<Meshnet<Pointnet。其中 Point  Trans-
former 模型在0—100次的迭代训练次数内就能够

有效的降低分类准确率的loss值, 获得更好且更快

的分类效果。Meshnet和Pointnet在迭代训练过程

也是随着迭代次数的增加, 分类准确率的loss曲线

逐渐降低, 其中meshnet所需要的训练次数明显高

于Point Transformer和Pointnet模型, 且loss值高于最

低的Point Transformer, 说明在模型的分类效率上

Point Transformer是优于Meshnet。虽然Pointnet模
型在0—100次的迭代训练次数内能够获得比较稳

定的loss值, 但是其准确率的loss值要大于Meshnet
和Point Transformer模型, 所以其分类效率与Point
Transformer相近, 但是分类效果要比其他两种方法

要差。综上, 可视化3种方法的训练过程, 可知Point
Transformer模型具有更好的分类效率和应用潜力。 

3    讨论

在本实验中基于不同网络对鱼类3D模型呈现

了不同程度的分类效果, 以及实验中采用的处理方

法, 主要从以下几种原因进行讨论。

从鱼类3D模型识别特征上来看, 收集的鱼类模

型样本中草鱼和鲫的表型特征是比较鲜明的, 且易

于辨认的, 而3种鲌类在形态特征相似度较高, 这可

能是3种鲌亚科鱼类分类准确率偏低的原因之一
[37]
。

此外, Pointnet网络模型对于翘嘴鲌的分类准确度

高于蒙古鲌, 对蒙古鲌的分类准确率甚至低于30%,
这可能是由于翘嘴鲌与蒙古鲌在形态特征上可能

更为接近, 虽然在摄食器官的形态上翘嘴鲌与达氏

鲌也是比较相近的但是身体的其他特征上尤其是

头部至背鳍区是存在差异
[37, 38]

。这说明基于普通

的点云特征提取的Pointnet网络难以获取相似物体

的准确特征 , 导致对分类个体的误判 , 准确率降

低。而Point Transformer基于多头注意力机制, 注
重局部特征的获取, 对于相似个体具有更好的分类

结果。因此后续应重点针对相似鱼类模型及其细

微结构的表型数据获取和分类研究, 这提高了三维

模型的获取的标准与要求。

本实验在进行模型分类之前使用了数据降采

样技术, 虽然基于二次误差度量(Quadric Error Metric)
的增量式方法, 能够有效解决因点云数量过多导致

分类过程的分类效率过低的问题, 模型的总体占用

空间过高的问题, 但是减少点云数量导致的整个鱼

体表面的微结构出现的变化的程度大小, 以及对后

续的总体分类准确率的影响, 我们并未探究。因此,
在后续鱼类三维模型的细粒度分类方向, 我们希望

能够获得一个准确的结果, 并提出一个标准来对其

进行度量, 为后续鱼类三维模型的细粒度方向分类,
提供一定的理论基础。

目前基于三维鱼类模型数据集构建的研究相

对较少, 真实鱼类的3D模型获取困难且速度较慢。

本实验鱼类模型样本虽然利用旋转增强进行了扩

充, 但是相对于二维图像分类所要求的数据量, 目
前的三维数据集规模仍较小。这在一定程度上也

是制约现有鱼类3D模型分类效果的提升, 后续还需

要扩大鱼类三维模型的种类及单个类别的数据量。

目前对于鱼类三维模型的获取手段, 具有速度

慢、模型有噪声、耗费大量人力、自动化水平低等

特点。伴随传统的各项渔业技术的革新, 后续的鱼

类三维模型获取手段, 也应该向人工智能技术结合,
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图 7   利用ROC曲线和AUC (曲线下面积)评估分类模型性能

Fig.  7    Assessing  classification  model  performance  using  ROC
curves and AUC (area under the curve)
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图 8   利用loss曲线可视化不同分类模型的训练过程

Fig. 8   Visualisation of the training process of different classifica-
tion models using loss curves
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类似现有的智能投喂技术
[39]
、养殖监测模型

[40, 41]
、

鱼类疾病预测系统等
[42, 43]

。因此, 将人工智能技术

应用于鱼类三维方面, 并搭载智能仪器的进行应用,
不仅可以有效缩短鱼类三维模型获取的时间, 还能

推动鱼类三维模型数据库的建设与应用。

鱼类三维模型数据集的构建需要丰富且准确

的表型特征信息, 虽然目前有许多数据库例如Google
等可以很好地支持和显示常见三维模型的特征信

息, 但是针对真实鱼类三维模型, 则需要构建与鱼

类相适应的特征展示模型及将鱼类三维模型数据

放入存储和调用的专用库, 这两个原因相互影响,
对真实鱼类三维模型数据集构建和获取带来了较

大的挑战。 

4    结论

本文提出一种基于Point Transformer的鱼类三

维点云分类模型, 用于对真实的鱼类三维点云进行

分类识别。该方法通过将point transformer用于真

实的鱼类三维点云模型, 并且通过调整其在初始阶

段的预处理策略, 来提高其分类性能, 在自建的鱼

类三维模型数据集上的实验结果表明, 该方法能够

获得较高的准确率 , 与对比网络Pointnet和Mesh-
net相比本方法的整体性能占优。此外我们还在数

据预处理阶段, 利用点云降采样的方法有效降低了

鱼类三维模型的点云数量, 提高了鱼类三维模型的

分类的效率, 并且在鱼类数据样本较少的情况下,
通过利用三维模型旋转的数据增强技术来扩充本

研究实验数据集, 进一步提高模型分类的鲁棒性。
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CLASSIFICATION OF 3D POINT CLOUD MODELS OF FISH BASED
ON POINT TRANSFORMER APPROACH

HU Shao-Qiu1, 2, DUAN Rui3, ZHANG Dong-Xu2, 4, BAO Jiang-Hui2, LÜ Hua-Fei2 and DUAN Ming1, 2

(1. Huazhong Agricultural University, Wuhan 430070, China; 2. Institute of Hydrobiology, Chinese Academy of Sciences,
Wuhan 430072, China; 3. Huijing Technology, Co., Ltd., Wuhan 430074, China; 4. University of

Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Phenotypic data serve as the foundation for effective monitoring of fish species. Currently, fish classification
heavily relies on expertise from relevant professionals, leading to issues such as low efficiency, high errors, potential
damage  to  fish  bodies,  and  susceptibility  to  subjective  factors  affecting  data  quality.  In  this  study,  we  developed  a
simplified  device  for  acquiring  three-dimensional  models  of  fish,  pioneering  the  creation  of  a  dataset  comprising
authentic  three-dimensional  fish  models.  By  leveraging  the  Point  Transformer  algorithm,  we  can  rapidly,  efficiently,
and accurately extract phenotypic features from three-dimensional fish bodies, enabling precise classification of diffe-
rent  fish  species.  A  total  of  110  authentic  fish  three-dimensional  models  were  collected  in  this  research,  resulting  in
1650 experimental  samples  after  preprocessing,  rotation  enhancement,  and downsampling operations  on the  acquired
3D models. Subsequently, through classification training and validation using the Point Transformer network and two
comparative  networks  for  three-dimensional  classification,  the  results  indicate  that  the  proposed  Point  Transformer
method  outperforms  the  two  comparative  networks,  achieving  an  overall  classification  accuracy  of  91.9%.  Simulta
neously, an effective evaluation of the utilized three-dimensional classification networks was conducted, demonstrating
the meaningful classification of the three models for five authentic fish species models. The Point Transformer model
exhibited  the  highest  ROC  curve  accuracy  and  the  largest  AUC  area,  proving  its  effectiveness  in  classifying  three-
dimensional fish datasets. This study presents a method for accurately classifying three-dimensional fish models, offer-
ing a new technological approach for intelligent monitoring of fisheries resources in the future.

Key words: Point Cloud Processing; Point Transformer; Three-dimensional Model; Fish Classification
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