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Left. realistic point cloud data acquisition device; Right. CAD plan of point cloud data acquisition device
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Fig.2 Fish 3D point cloud dataset production
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Fig. 3 Example of fish 3D data cleaning
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A represents the fish data before cleaning; B represents the model

after cleaning
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Fig. 4 Edge contraction: the highlighted edge is contracted into a
single point. The shaded triangles are removed during the contrac-
tion

AM = Y D= Y V(K

peplanes(v) peplanes(v)

:vT( > Kp]v

peplanes(v)

)

A, P (V) RRIEZT S AL AT =M.
It HAEN AR L R b, P A e 2 22 AT E X
N AW) =AW)+A), Hor AV 248 f5 7 4
ITH AR ZE o

BRI R T A S 56 B A5 FH ) 2 4R
H SRR, FH 5 e o0 TR 2 I B
AR —E MRS . BN T ORIESEES ROR, 3
TR B A = A SR e e () 3 i 7 gk AT 93,
W] SR AR SCE ST 3 g haxis_ X axis Y.
axis_Z, 3 H B e iy 2 e iy . S8 5, X1
A e e b, e ¥ M RN 6, K 20, B (0,
360). A K GE AR Bl ) = 4 SUE B R o N A B
B, Ha T

(1) Bz
X cosf —sinf O X
R,=| Y :[ sinf cosf O H y ]
z7 0 0 1 z
(2) Y Hhie %

[ X’ ] [ cosf@ O sinf ][ x ]
R,=|Vy |= 0 1 0 y
| 2| | —sinf O cos6 || z |
(3) LEXHlEs;
[ X1 [1 O 0 [ x|
Ry=|y |=| 0 cosf -—sinf || y
4 | O sind cosf || z

PR R 2 T 4 50 i, BRATTRE e I 1) T A T A5
B3 OB R SO, DL S Y K 8T
B PG A I S AR T R N 16500, F2 9 1
=B qIpa gtk SRR S

ZA

K5 f 2 = YRR e i i R s £

Fig. 5 Example of data enhancement process for a fish 3D model
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Tab. 1 Experimental results on fish dataset (%)

HE TP R RRTIAY KA R AER % e F154
Algorithm Import Model points Number of models OA (%) m-Acc (%) F1 score
Meshnet [i)a1 2048 81.4 73.1 82.7
Pointnet RABER 2048 75 80 76.4
Point transformer AR 2048 91.9 91.7 91.9
*2 HEIMELZHERE FHTHER
Tab. 2 Classification results on a three-dimensional model of five fish species (%)
RS T K KA e FH I i i
Algorithm Ctenopharyngodon idella Culter dabryi Culter mongolicus Culter alburnus Carassius auratus
Meshnet 95 74.4 85.4 60 85
Pointnet 71.1 89.8 27.8 88.9 87.9
Point transformer 97.6 88.8 92.9 85.7 93.3
over-accuracy 87.9 84.3 68.7 78.2 88.7
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CLASSIFICATION OF 3D POINT CLOUD MODELS OF FISH BASED
ON POINT TRANSFORMER APPROACH

HU Shao-Qiu"?, DUAN Rui’, ZHANG Dong-Xu”*, BAO Jiang-Hui’, LU Hua-Fei’ and DUAN Ming"’

(1. Huazhong Agricultural University, Wuhan 430070, China; 2. Institute of Hydrobiology, Chinese Academy of Sciences,
Wuhan 430072, China; 3. Huijing Technology, Co., Ltd., Wuhan 430074, China; 4. University of
Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Phenotypic data serve as the foundation for effective monitoring of fish species. Currently, fish classification
heavily relies on expertise from relevant professionals, leading to issues such as low efficiency, high errors, potential
damage to fish bodies, and susceptibility to subjective factors affecting data quality. In this study, we developed a
simplified device for acquiring three-dimensional models of fish, pioneering the creation of a dataset comprising
authentic three-dimensional fish models. By leveraging the Point Transformer algorithm, we can rapidly, efficiently,
and accurately extract phenotypic features from three-dimensional fish bodies, enabling precise classification of diffe-
rent fish species. A total of 110 authentic fish three-dimensional models were collected in this research, resulting in
1650 experimental samples after preprocessing, rotation enhancement, and downsampling operations on the acquired
3D models. Subsequently, through classification training and validation using the Point Transformer network and two
comparative networks for three-dimensional classification, the results indicate that the proposed Point Transformer
method outperforms the two comparative networks, achieving an overall classification accuracy of 91.9%. Simulta
neously, an effective evaluation of the utilized three-dimensional classification networks was conducted, demonstrating
the meaningful classification of the three models for five authentic fish species models. The Point Transformer model
exhibited the highest ROC curve accuracy and the largest AUC area, proving its effectiveness in classifying three-
dimensional fish datasets. This study presents a method for accurately classifying three-dimensional fish models, offer-
ing a new technological approach for intelligent monitoring of fisheries resources in the future.

Key words: Point Cloud Processing; Point Transformer; Three-dimensional Model; Fish Classification
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