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FEE: R AN [F) B KA AN RN BE AR T B K= B AR . HEAR AN AR 5 M B g2 1 s i, BF e DKo 0T 46
14 5 (8.000.20) gft) K25 8F(Scophthalmus maximus L)ZNEAF RS2 %, BB T B INAS R BE K AN 0 B
JIE 7 TR 1) 8 55 280 55 IR I & TR : X HEH(CON) ERAHERZH(PA) T E R 41L(SA) MR (0A). Wil 4H
(LA). WHEHALA). TE4 VUGB (ARA) —+ “BR/NIGE/ — 3k T R 4L (DHA/EPA), 7£ 18 C I 1E
IKFRIA RGBT IS JE (R SEEG . 45 SRR BB T k) A 48 i i TR K RN AN VO D B2 ) 35 0, K 3E 6.4
11 B R (WGR) R A K (SGR)MIEE A i %R (PER)HE = #4354, ARAZ WGRHISGR & 5, DHA/EPA
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B 7K = IR R PR K R, AR =
AR, 1 90 R I 0 U5 28 4% 19 ke e s e
TXNTHEAN K= FRFEAT ML R Je 3 Bl 1 7™ B 5 M, T
T (s K. KR b s Bam&
i, AR B . DRI, A P A A0k A v
WAIE W R i — i RR A 7R T
Yyt 5 oA e, 3R B R DT R ) B2 A [ Rl
FEAE = PG ANV AT 7 R S EPA. DHA%S K 5%
L ARMA iR I & BT e 2= 7, Ak
(1) i 7 1R 2 £ R0 T 7 TR B v fe AR AR KL IR AR
W R AMPTAEALRE I B OCEEEH, AF
PIREITR WA E A R A3 E A . DHARIEPA
CIRVSGiBuRt R IR LN LS R a2 R SRt B i bvig
1 St o pA i A8, it fa Ak p A et g
A VYRR XK= E . LN AR R
PRV BT B R AEHE AT sk s e T, —
LG 7K RN T R M £ AN BN IV JBR IR 2 #te Fi A
55 2 AN M i 9 R (Long-chain polyunsaturated fatty
acid, LC-PUFA ), 8% e fe A 2™,

KEEBE(Scophthalmus maximus L.), X 5 KL
Hfo, 2 s, BAAEKR. RmgER o,
BIRME S SR . A, B EEO T E AT i i
R EERE KIS " SHE R R,
DHA. EPA & K258 ()5 77 7 K v 46 75 (1 IR D R,
HKZE6YDHA. EPATG R EN1%—3.5% o fik}
BT RR, JCH R HUFAs2: 53 i K25 6 4t
AR, s A BRI, 38 i R AR R
ASTF R TR A R ZE g A K IR AR A e 1Y)
SO, B AE T E ORSE BT E IR A PR S L AR A
R, RAHIEFUNG 107 R AE A N s L AL, AR
4a T MK = IR AT R K&, FENTTE R
B TR () RS SPIC S A R AL S

1 RSk

1.1 RIeER

O TS ER RIS ek o A S 6 A 3 B
() EE R, I DT U R R OR IR IR, 7R
FER AR} RE O K 3E 6Fn-3 LC-PUFA R SR I 2 At
b, 2 A IN0.5% AN R R DT IR, Tl B R B S &
950%, 5 W7 2 59 12% 00 55 %055 N G & vk
RIEA IR RR IR AR, W& T 8MNA R AL FEA,
A3 50 R I H v = X B AL (CON) B AR R 41
(PA, C16:0). il IR R 21 (SA, C18:0). VHEZ 4 (OA,
C18:1). IHERZ(LA, C18:2n-6) a-WFRZH(ALA,
C18:3n-3). {4 VUM L 21 (ARA, C20:4n-6)F1 —+
TN HEER (DHA, C22:6n-3)/ 1% i M5 & (EPA,

C20:5n-3) I I EL B A2/12H(DHA/EPA) . S5 B
P AR BRCFT 8 FR A AR BT . T8 SR
TEAX(GS, HP6890, 52 [H) 7 bl ke v i iy g 4 ik,
AR TR AL R A 35 271

TER 56 VAR VR B, BT ) Rk A 48 0 2 3
80 H i P HI A LR B )5, 3% BRI 7 /b B 2, B
PRS0 JE I K S OB AR Ayl R VR A e
160 H M, B335 )5, o F AL AN K+,
BV RE . B ARRLIE B AR N3 mm )5
B GERE, O RFE N 55°C Mt A b, Bk 24h )5 BN
—20°C FIUKFE A ARATAE FH
1.2 FERRE

REERL 8 H LR G EAE R 7 EH K
FRHHRHE A PR A 79, FR5E I AE 1L AR & B (E
R 7 K 8 7R 5 RS B AT O E PR K FR
R HAT . WA E T A KZE BN AE R K
ARG, AT W2 (8 TR YA, B % B A] 45 T 8
TR AR, T 5 P I H AR TR KA 2 — ) fidk B K
ZF 7 2)1#1(8.00+0.20) g, BEAL /7 FC 245 FRFEAH(250 L)
W REAN AL PR B3N R AT, M40
TEARE HATE], JE 38 R S /K iR N (18+0.5)°C, KA
N8 mg/L, TEIIKpHNT.5—S8, 5 JE N FE29%0—
31%o0, 2 %.<0.1 mg/L, 1. £<0.01 mg/L. F#FE 5%
IASJE , K [ E FEME29(7:004119:00), IR I
I HR /D 8 2 G AT R, B ORSE R A,
M 1h/5 #7K 5%
13 #mRE&E

TEFRIA S WG, B K 35 6k 47 YLk 24h, T f5
AR BT S AT AR E I SR R AR
FF A KR35 0 Fa An v 85, 110 5 A4 Bl AL
V4 AR A7 T -20°C UKAR F T 4 fa AR 41 sl 72 43
Mo TEVLHR48hG, T BEHLEC2E T &
(1:10000) bk i o M B A 26 . 4K, 3 A 351 FR = Y
JIEE R 2R, s B SR . RFAE . R R R
A 15 mLES O 8 v VR S84 U 5 T 72 21
—80°C [ UKHH LRAT J7 15 )5 B2 14 43 B (13 BT B2
Rk I, b 0 R BRIk
BT RAT, A5 HURE 25 3R i 2O WL (FE 1E 5000% g) 25
> 10min, WHY_F 2 175 )5 50 2%, B -80°C Uk A H f/
)
1.4 {ARAISEIFE RS

TRV A f2 s 4L B 2 772 B AOAC™Y,
W A5 DR B HEAR 105°C BT 2 S &, Wl E
Ko . FALE e Z (D200, #RE &) &
FE ST U 8 A, TR 07 0 5E 42 (SOX606,
Y BB AR )W e A T TORE G s 7 1, R A
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(SX470, 7K B = J7 A 2% )H 550°C = i 78 70 FI B
160l & K 2K 73 5 &
1.5 RFBEF0 M ;EESE HANE

H o = B8 (TG, 55 A10-1-1). A fiH [ B2 (T-
CHO, Tt 5 Al111-1-1). &% Z 8% A(LDL-C, &5
A1113-1-1). &% FE 5§ & A (HDL-C, &5 A112-1-
. BPERE S1(T-AOC, 175 A015-2-1). A
fi¥ (MDA, 5 A003-1-2). TS LABECAT, 185

2)359 5K FH e i A B AR w1 AR Rl e, LR R AE
PR AR BT AR AL AR 0 R AR
1.6 RNARIZENAISLRTRHEEPCR(qRT-PCR)

JF I RNAF $2 B 3% 18 28 = R AE W A =) 1
RNAeasy " ZIHIRNAHHE 7 £ (B 0k 20) BT
P 0 T 548 20 BRER AR, SR I FFIE I RNA,
{8 FNanoDrop 2000435t & 11 (Thermo Fisher Sci-
entific, & [F)f 5 A M RNAZE B | [5] i 4 FH 1.2%35

A007-1-1). i H ALY B 1k § (SOD, & 5 A001-1- RE MR A M HE ICRNA R L& . &4 FIRNAFDEPC
£1 ARES RIEER TR

Tab. 1 Formulation and proximate composition of diets (dry matter)

J ok} ANTEI G i BR 1R K} Different fatty acid diets
Ingredient CON PA SA OA LA ALA ARA DHA/EPA

¥ Fish meal' 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00
Fi% £ 19 Casein” 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00
KBk Vital gluten’ 14.65 14.65 14.65 14.65 14.65 14.65 14.65 14.65
A Z e Fi Cassava starch 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
1k & £ 4k X Microcrystalline cellulose 6.17 6.17 6.17 6.17 6.17 6.17 6.17 6.17
£ i Fish oil’ 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18
H it = E5 Triglyceride 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KR MR Palmitic acid 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
i i 1% Stearic acid 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
MR Oleic acid 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00
¥ B2 Linoleic acid 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00
o- IV Bk 2 Alpha linolenic acid 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00
162E PYJA R Arachidonic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
DHA/EPA=2/1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
K 5 9% A5 Soybean lecithin 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Yi £ FUR KL Vitamin premix” 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0% ik Mineral premix® 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
HoAthOthers’ 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
B IS (TR, %) Nutrient composition (dry matter, %)

7K %3 Moisture 3.74 3.81 3.67 3.69 3.92 3.88 3.79 3.85
12 4 Crude protein 51.22 51.37 51.33 51.26 51.34 51.41 51.33 51.32
KR Wi Crude fat 11.56 11.44 11.47 11.36 11.53 11.44 11.40 11.49
K4y Ash 10.71 10.63 10.74 10.77 10.57 10.66 10.72 10.69

¥ '8 Fish meal: $17& [9 Crude protein, 68.87%; /gl Crude fat, 7.93%; “B% & [1 Casein: ¥ 7 (9 Crude protein, 92.13%; ¥ /i
Jlif Crude fat, 0.38%; "% /it Vital gluten: 7% [1 Crude protein, 84.05%; ¥ /I§ /i Crude fat, 0.72%; *f13H Fish oil: {15 /i Saturated
fatty acids (SFA), 25.39%; S ALF1JE 7 R Monounsaturated fatty acids (MUFA), 20.58%:; n-62 AN AN i R n-6 Polyunsaturated fatty
acids (n-6PUFA), 6.82%; n-3% A~ i1 1 fI§ JIj B2 n-3 Polyunsaturated fatty acids (n-3PUFA), 34.45%; *4t £ % Wi %} Vitamin premix
(mg/kg): o-4= By o-Tocopherol (50%), 240; % ¥ & Vitamin B2 (80%), 45; 44 & B12 Vitamin B12 (1%), 10; FiffZ & Vitamin B1(98%),
25; 32 R Vitamin B5 (98%), 60; MR Vitamin B3 (99%), 200; Mg Folate (98%), 20; 44 2 D3 Vitamin D3 (1.25%), 5; 4:/E % K3 Vita-
min K3 (51%), 10; 445 Biotin (2%), 60; 5 BRI B Pyridoxine hydrochloride (99%), 20; Bt iR 4 4= & A Vitamin A acetate (15%), 32;
AL Inosine (98%), 800; 4k % C Vitamin C (35%), 2000; F&7e#; Rice husk meal (100%), 6470; HT4E L7 Antioxidant (100%), 3; B
i B K Mineral premix (mg/kg): TE 244 Na,SeOs (1%), 20; Hiliath MnSO,-H,0 (31.80%), 45; B4 CuSO,-SH,0 (25%), 10; Filis
# ZnSO,-H,0 (34.50%), 50; 44k CoCly-6H,0 (1%), 50; Wil H: MgSO,-7TH,0 (15%), 1200; HLALAT Cal, (1%), 60; B4k FeSO,-
H,0 (30%), 80; i F ¥ Zeolite, 3485; "HAth Others (%): 2 AL HETH Choline chloride (99%), 0.25; B§lE %45 Calcium dihydrogen phos-
phate, 0.5; &5 Calcium propionate, 0.1; Z & IEME N Ethoxyquinoline, 0.05; 5 & 7 Food attractant (FH S5 5 R = - H &R N &
IR - 5-E L FF=4:2:2:1 1) (Betaine: Thietine propionate:Glycine: Alanine:Inosine 5-phosphate=4:2:2:1:1), 1; Z4 & 7 (& # R #4) Bind-
ing agent (sodium alginate), 0.5; —%&ft —%¢ Y,0;, 0.1
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Tab. 2 Fatty acid composition of test diet

A AR Wi BR 1Al K} Different fatty acid diets

Fattyacid CON PA SA OA LA ALA ARA DHA/EPA

C14:0 492 480 443 4.87 458 440 4.19 4.17

C16:0  22.4324.4921.1221.4021.4820.8821.07 21.25

C18:0  5.69 5.10 7.50 4.82 5.59 526 5.22 5.67
ZSFAI 33.04 34.39 33.05 31.09 31.65 30.54 30.48  31.09
C16:1n-9 439 456 427 477 439 431 398 428
C18:1n-9 152715.1215.13 18.68 15.09 15.67 14.56  15.73
C20:1n-9 0.26 024 0.27 0.24 030 0.27 032  0.30
ZMUFAZ 19.9219.92 19.67 23.69 19.78 20.25 18.86  20.31
C18:2n-6 9.57 9.88 9.48 10.2513.3110.83 9.96  10.57
C20:4n-6 0.53 0.55 0.58 0.41 0.72 0.60 2.51 0.60
Zn-6PUFA3 10.1010.43 10.06 10.66 14.03 11.43 12.47  11.17
C18:3n-3 329 348 3.77 3.60 4.03 5.55 3.35 3.85
C20:5n-3 4.17 3.86 391 3.59 4.16 4.00 3.93 5.11
C22:6n-3 6.36 598 6.09 5.71 5.52 6.26 6.03 8.32
Zn-3PUFA4 13.8213.32113.77 12.9 13.7115.8113.31 17.28

¥ 'SFA: W0 I8l W Saturated fatty acids; "MUFA: B A
1% 107 B2 Monounsaturated fatty acids; *n-6 PUFA: n-6 % 41| £ A<
HFIBE i n-6 Polyunsaturated fatty acids; ‘n-3 PUFA: n-3 %%
Z AR TR n-3 Polyunsaturated fatty acids

KA BE R F] — V& £, F PrimeScript ' RTiR 7 'Jm(Ta—
KaRa, H ZIK)J% RNA % # 3% .cDNA. 1§ F§SYBR"
Premix Ex Taq' (TaKaRa, H Z)i& 7 flqRT-PCRE
= X (CFX96TM Real-Time System, BIO-RAD, 3%
AT B s IR Al U A . A S 2
B A p-actin, F %2 2 T5 5 4% HEOE R R
XL E . qRT-PCRIEARGIPF5 WA 3.
1.7 E£KIEHRAR

1 # Z (Weight gain rate, WGR, %)=[fi K =&
(g)—f1 ) E (g)])/ 4] FE (g)* 100;

Ak Z2 # (Feed conversion ratio, FCR)=4% ¥ &=
()[R HE (g E (g)];

58 4 K K (Specific growth rate, SGR, %/d)=
[Inft K () In L 4] 5 (g)]/57 5E K £ (d)> 100;

B % % (Feed intake, FI, %BW/d)= & & (g)/
[(F R H (g)+AA]E (g))/2)/F=FE R (d)x 100,

[ Ji %K (Protein efficiency rate, PER)=[f
K (o)W (g) )/t H BN (Q);

173 % (Survival rate, SR, %)=1x £
(B)/AW146 ()= 100;
1.8 BUESH

SIS HE FH P 2 {H 45 #E 157 (mean+SE) R £ 7,
T A5 0405 22 38 SPSS25. 08K A4 43 Bt HEAT PR IR 6 77 7%
73BT (ANOVA), 4 % A FR A A7 75 12 35 22 5, ISR H

SAF I R A

Tukey sV 4T 2 B, PLP<0.05K R ZEF R
2 R

2.1 ARFRMAEBE AT ER X K84 & 4 K1
RERY 2T
e AR, ERER A INAS [F g TR, K22 67
) A7 R (SR IR B R (F)K A & 3& Z 7 (P>
R3 LFTSEER PCR 5IHF5
Tab. 3 Primer sequences used for qRT-PCR

K Gene 5| ¥)Primer (5—3")
FAS GGCAACAACACGGATGGATAC
CTCGCTTTGATTGACAGAACAC

PPARy AAGTGACGGAGTTCGCCAAGA
GTTCATCAGAGGTGCCATCA
SREBPI GCCATTGACTACATCCGTTAC
CATCAGCCTGTCCATCTACTTC
PPARa CGATCAGGTGACCCTGTTAA
TGGAACTTGGGCTCCATC
ACOXI AGTCCTCGCCCAGCTTTACT
GGCTTCACATAGGTTCCGTCT
TLR2 AGGAGCCAAGGGAGACCGAT
GGCGCTCATGATGTTGTCC
TLRS ACAGATCCTTGAACTCCCCG
TCCAATCCCTCTCCTCCAGA
TLRY AAGGCTCTGAGGGGAAAGAC
TTCTTCACAGAGCTGAGGGG
MyD88 CCCAATGGTAGCCCTGAGAT
CATCTCGGTCGAACACACAC
NF-xB p65 ATGCCTTTGAGGACCTTTT
GTGTTCTGGGATGCTGTGT
IL-1p TACCTGTCGTGCCAACAGGAA
TGATGTACCAGTTGGGGAA
IL-8 GACAGAGAGCAAACCCATC
CCAGTCAAGTACATTCAAG
ITNF-a CCCTTATCATTATGGCCCTT
TCCGAGTACCGCCATATCCT
TGF-p CTGCAGGACTGGCTCAAAGG
CATGGTCAGGATGTATGGTGGT
P-actin GTAGGTGATGAAGCCCAGAGCA

CTGGGTCATCTTCTCCCTGT

VE: FAS. fRHBR & 1B, KC189927; PPARy. i E ALY K
A FEYIE 52 Py, KC189932; SREBPI. [E AT k&4 & A
1, MH174964.1; PPARa. 3 %8 A0 W) g 14 19 TE D 0TS A4 o, XM
035614759.2; ACOXI. I & %fi iy A% 1L 1 1, KC189925; TLR2.
tollFE524AR2, KU746963.1; TLRS. tollF£ 52148, KX708702.1; TLRY.
tollFf: 52449, KU746969.1; MyDSS: BtE7r 1k K788, KP985236;
NF-kB p65. #% A -T--xB p65, MF370855; IL-14. 41 il /i~ & 1P,
AJ295836.2; IL-8. FIAH A 3 8, XM035638412.1; TNF-a.. i 98
INFE A T o, FI654645; TGF-B. ¥ L E K K F B, KU238187.1; §-
actin. AZFEH, EU686692.1

Note: FAS. fatty acid synthetase, KC189927; PPARy. peroxi-
some proliferators activated receptor y, KC189932; SREBP]. sterol-
regulatory element-binding protein 1, MH174964.1; PPARo.
peroxisome proliferators activated receptor a, XM035614759.2;
ACOXI. acyl-CoA oxidase 1, KC189925; TLR2. toll-like receptor
2, KU746963.1; TLRS. toll-like receptor 8, KX708702.1; TLRY.
toll-like receptor 9, KU746969.1; MyDS88. myeloid differentiation
factor 88, KP985236; NF-«kB p65. nuclear factor-kB p65,
MF370855; IL-1f: interleukin-1B, AJ295836.2; IL-8. interleukin-
8, XM035638412.1; TNF-a. tumor necrosis factor-o, FJ654645;
TGF-p. transforming growth factor-f, KU238187.1; S-actin. beta-
actin, EU686692.1
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Tab. 4 Effects of different fatty acids on growth of juvenile turbot
AhF LR A K3 hrGrowth index
Treatment T RWGR (%) [k RHFCR e EK#ESGR (%/d)  HEEFI (%BW/) &AFKEPER 715 Z%SR (%)
CON 569.27+9.50" 0.7240.00" 3.404+0.03" 1.89+0.01 2.80+0.01° 100+0.00
PA 551.57+7.56" 0.73+0.00" 3.35+0.02" 1.9240.01 2.73+0.02°" 100£0.00
SA 554.80+5.49™ 0.7240.00% 3.35+0.01" 1.90+0.01 2.77+0.01% 100£0.00
OA 565.59+7.07" 0.7320.00" 3.39+0.02" 1.91+0.01 2.760.02" 100+0.00
LA 536.37£10.47" 0.730.00" 3.30+0.03" 1.89+0.01 2.75+0.02% 100£0.00
ALA 562.16£9.37" 0.71£0.00" 3.38+0.03" 1.87+0.01 2.8240.01" 100£0.00
ARA 585.88+7.13" 0.71+0.01° 3.44+0.02° 1.890.01 2.82:+0.02" 100+0.00
DHA/EPA  580.59+8.57" 0.70+0.01° 3.42+0.02° 1.86:0.02 2.86+0.05" 10040.00

T 7 — SN AN A _E AR TR RO AR R B35 22 57 (P<0.05); T[]

Note: Values in the same column labeled with different superscript letters are significantly different (P<0.05). The same applies below

0.05). [t & 75 A s PR B e AN VR R 58 (1) 384,
1 # R (WGR) AR 2 4 KR (SGR) £ 3L L TH I #a A,
ARAZL FIDHA/EPAZH )WGR. SGRiR i . DHA/
EPAZLf{ 2R A 5 2% (PER) 5.3 & T PA4L(P<0.05).
MDHA/EPA H) Tl kL ZE(FCR) B E K TPA. OA
FT LAZL(P<0.05), 5 H A B 3% 2 7(P>0.05).
2.2 ARIRINA A BRBR X K 2 BT 4h £ (A 2H B
EppAl

T Ik X K 2 6 4 AR 2H RS RR 53 o BT (R 5): T
TR INAS R B 7 R, K32 B4 £ 1) 7K 53 FIK 53
HAH IR TE R 2 R (P>0.05) . BifiE g 7 R IR B K
J5EFAN AN B (38, AR R B & = BT,
FABI & &6 Frk#k. 7ERTAH L34+, DHA/EPA
HMEAS ERE, HEF S TCON. PA. SA.
OA. LAFIALAZ.(P<0.05), PAFISAME L& &
BFECTALA. ARAFIDHA/EPAZL(P<0.05), ARA
HME A SR EE 5 TCON. PARISAZL(P<0.05),
HoAth 54 18] 22 AN (2 35 (P>0.05); B 5 JIg 107 18 ik
A B AN RN B ()38 00, 4% Ak 38 4 e AACH R i 7 =
B W A%, DHA/EPAFI ARAZLH I 7 2 & B 35 1%
T CON. PAFISAZL(P<0.05), F: At 5% 25 8] 4L fig iy
HREZERANEEP>0.05).
2.3 AR ERE AR X K B4 I 2R A&
&=t aN:0pA

TE Ik K SE BT 4 £ 1 K A A FR AR 2 BT (R 6):
FEVA R A INAS R 7 R, K32 67 4 2 1) 1 S 2 iH
[i] {2 (T-CHO) 7 12 b 6 ¥ 10 A 7 8 1 % K AN AN T
£ B 88 hn 2 2 PR (P<0.05), ALA. ARAFIDHA/
EPAZT-CHO % & 2 K T PAZL FISAZH (P<0.05),
HADHA/EPAZAT-CHO & &K, & E KT CON.
PA. SAFIOAZ (P<0.05), PAZLT-CHO % & % i -
DHA/EPAA H i =8 (TG) & & B Z (X TLA. PA.

5 AR = BE A BR T K S AT AR4H AR RIS
Tab. 5 Effects of different fatty acids on body composition of
turbot

R 4H i Body composition (T-4)i)

LOSE il K5y M HELIE 7 K5y
Treatment  Moisture Crude protein Crude lipid Crude ash

(%) (%) (%) (%)
CON  76.24+0.57 64.75£0.47" 22.89+0.17° 12.71+0.44
PA 7632038 63.96+0.38" 22.52+0.54™ 12.41+0.30
SA  76.46+0.47 64.11:0.41" 22.0120.26" 12.77+0.42
OA  76.524020 65.55£0.55"°21.07£1.15" 12.87+0.52
LA 76.21+0.52 64.96+0.66™° 21.43£0.44"™ 12.49+0 15
ALA  76.72+0.62 65.99£0.79™ 21.64+0.59™ 12.47+0.27
ARA  76.76+0.61 66.64+0.84" 20.03+0.40° 12.64+0.39
DHA/EPA 76.94+0.55 68.02+0.83° 19.96+0.80° 12.57+0.25

6 (AR [E) AR A X K S 6T M IR A (LI ARAT 20
Tab. 6 Effects of different fatty acids on plasma biochemical
indices of turbot

1. 3% 44k Fe b Plasma biochemical index

WL iR —me RAERERE IREENE  mw e
Treatment TG T-CHO & HLDL-C &EHHDL-C
(mmol/L)  (mmol/L)  (mmol/L)  (mmol/L)
CON  3.0240.25% 1.95+0.22™¢ 0.83+0.04° 2.02+0.10™
PA  3.58£0.08° 2424031  0.96+0.04° 1.82+0.06"
SA  3.66£021° 2.17£0.31°  0.90£0.02° 1.88+0.05"
OA  2.63+0.25" 1.95+0.40™" 0.80+0.05' 2.05+0.09"
LA 2.81£0.18"" 1.60+0.40™ 0.71+0.03° 2.27+0.14°
ALA  2.112024™ 1.5240.10°  0.66+0.03° 2.44%0.06"
ARA  2.28+0.32" 1.47£0.33"  0.57£0.06° 2.43+0.04°
DHA/EPA 1.86£0.16°  1.19+0.31°  0.47+0.04" 2.54+0.03°

SAFICONZ.(P<0.05), CON. PAFISAZHTGH & &
% & T ALAFI DHA/EPAZ (P<0.05), H: 4% % 4. 18]
TGH EHRA BFH %R (P>0.05). FEE R R
B R AN LA B () 3, i R HR AR 2 B IR R
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(LDL-C) & 3% P& ik (P<0.05), DHA/EPAZH Ifll A% 2%
FERREE A& =K, MPAAL & B s, MR
75 95 5 i 2K 1 (HDL-C) & & fEDHA/EPA 4H % 1,
EPAA AR, 37 HDHA/EPA. ALAFIARAZ &%
ET'CON. PA. SA. OAMILAZH(P<0.05), {HDHA/
EPA S5 ALAFIARAIE A B E % 7(P>0.05). OA
MILAZ &3 5 T PAZL(P<0.05), {H 5 CONFISAZL
WA 2.3 2 7:(P>0.05).
2.4 AR [EAS BB XY K 2 BT 4h £ B X5
MHXEREFRIZENF M

PR DA 5] R 7 R % oK 22 67 4 a1 S AR
HREER R EER SR WE 1~ ALAFIDHA/
EPAZH JIE AU AH S 3 (R FASH) %A B B Z K TPA.
SAFIOAZ (P<0.05; & 1A), 1H 5 ARAFICON4L %
F: /A3 (P>0.05); ARARIDHA/EPAZH PPARy(1) %
A E D ZCTPA. SAZH(P<0.05), (H5LA. ALA
FICONZH 2 7 A 8. 3% (P>0.05; ¥ 1B); ALAFIDHA/
EPAHSREBPINI R & W # (L TPA. SA. OAAI
LA (P<0.05), {H 5 ARAFICONA % 5+ A 2. 3 (P>
0.05; ¥ 1C); DHA/EPAZL PPARoHE R 3 ik B fi 7,
H &2 & T HAh % 41(P<0.05; K 1D); ALAFIDHA/
EPAZHACOXIZEHNFIAE R # R TCONL PA. SA.
OARILAZH(P<0.05; & 1E).
25 ARAIRIMAEAEBABR XY K Z 8T 4h & BT AR
R AN Eitan:0pA

Wz TR B R s i 107 IR B B K R
HUASHFN FE 3G 0, DR 22 6740 1 (1 S Hi A A e /o (T-
AOC). HANYEAEF(SOD). A MAR(CAT)
ity it P 35 SR B 0 e A, T Y — [ (SOD) g vt
ST RERES . eyl bEe /1M S, DHA/EPA
HT-AOCH =1, HE 3 =T CON. PA. SA. OARI
LAZL(P<0.05), MPAZ T-AOCHAK, & Z{% T HAb
KA FRA(P<0.05), ARAZHT-AOCE. % = TPA. SA
FILAH, HAb A 2 8] 22 Fe AN W25 (P>0.05); DHA/
EPAZ ¥ SODM i 1% #% /=1, & % = T-CON. PA,
SA. OA. LAFIALAKL#EZH (P<0.05), H 5 ARAAH
2 [ 2 3 H AR (P>0.05); PA. SA. OA. LA
CON 2 [8] /Y] CATHRE I 1 22 57 F A i 35 (P>0.05),
{H & Z 1K T ARANI DHA/EPA4L (P<0.05); PAZH
MDA %, 2% = TOA. LA. ALA. ARA
1 DHA/EPAZH (P<0.05), DHA/EPAZ 5 ARAZ 2.
[A]MD AR P 2 578 B 2 (P>0.05), {H 3 2% T
filr B AL B L (P<0.05)
2.6 AR [E) A B BS X K 2 BT AT B Se R 4B
KEFEFIEENF

DR R AR DA 5] I 17 T8 0 O 33 B &)y £ I 4

P AH O HE R Rk B 45 SR an 18] 27~ : DHA/EPA4
(1) JFF HIE G 928 5 (R IL- 1 3R 05 5t e A, PAZH I IL- 155
DRI 2 008 2 e e, LIt 5 VA 0 1 7 PR % K AR A T A
FERIRE I, IL-1p5E R ik & BRI R RS . ik

IOESTS

Relative expression
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Fig. 1 Effects of different fatty acids on fat metabolism-related
genes of juvenile turbot

CON. Xf[i4H; PA. KHHIRAL; SA. TEARRRZL; OA. JIRRZH; LA. Wi
AR, ALA. JEFRIRZL; ARA. TE/E VYNGR 41; DHA/EPA.— 1
ZWANSRIR/ TR IR . A—C. TR RN A 5] J5 Bi E
Xof R 2 7 4Jy £ JET A 7 JAH Gk R 38 52 R ; D—E. (AR
TRINAN 7 I8 0 b R 22 6 41 8 JFF AR R 0 23 AP AH O 2[R i 5
Wi AN [ - B R 4[] 22 57 10 % (P<0.05)

CON. control group; PA. palmitic acid group; SA. stearic acid
group; OA. oleic acid group; LA. linoleic acid group; ALA.
linolenic acid group; ARA. arachidonic acid group; DHA/EPA.
docosahexaenoic acid/eicosapentaenoic acid group. A—C. effects
of dietary supplementation with different fatty acids on the expres-
sion of genes related to liver fat synthesis of juvenile turbot; D—
E. effects of dietary supplementation with different fatty acids on
the expression of genes related to liver fat decomposition of juve-
nile turbot; different letters represent significant differences be-
tween groups (P<0.05)
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7 ARHRIMAE B R X K840 & RTRR I | (LBRE S
HISZAE

Tab. 7 Effects of different fatty acids on the activity of antioxi-
dant enzymes in liver of juvenile turbot

Hi AL 8 PR Antioxidant index

S = I L e R L
Treatment AE/JT-AOC MDA %E%%ﬁ?]f Lﬁéﬁﬁfﬁ

I/ l/
(gng?(?t) ngrglrg;)m) (U/mg prot) (U/mg prot)

CON  1.62+0.07% 3.34£0.09°° 71.00£2.19™ 9.29+0.66™
PA  139£0.02° 3.61£0.12° 67.23+1.60° 8.43+0.37'
SA  1.58+0.03° 3.45£0.06" 65.87+2.50" 8.44+1.20°
OA  1.6440.05% 3.19£0.18 70.94+0.68™ 8.54+0.81"
LA 1.59£0.04° 3.11£0.14"" 69.72+0.64™ 9.80+0.51°
ALA  1.6520.12° 3.08+0.13% 71.48+£0.90" 10.85+0.99™
ARA  1.7240.08% 2.88+£0.04" 73.93+2.30" 12.80+0.52%
DHA/EPA 1.76£0.03"  2.58+0.18" 76.99+1.81" 12.93+0.35"

RN I [ i 0 R, 9% 2L ) B U 92 25 (R IL -8R 1A
B % 7 (P>0.05); DHA/EPAZH I MyDS8SFE [A]
LA ERIL, BFELTCON. PA. SA. OAMLA4
(P<0.05), PAZHMyDS8SFEN Rk s f vy, W& T3
i % 40 B12H.(P<0.05); 5 7 VA I I 07 R e 1 A1 A 1
HIVRE (38 0, K25 67 4 £ BT JE NF-kB p6535E K ik
B Wi BRI, DHA/EPAZLNF-xB p65%: [N ik & i
FLTPA. SA. OAFILAZL(P<0.05), {H 5 HAh4H
2 B Z R IR EE(P>0.05), PAZLNF-kB p65H£ R 3
ik, PANISAZINF-kB p653E R ik B B E
T HoAh & 4k PR ZH (P<0.05); Bt A VA I TR 7 R i A A
ANVELAN BE (R 3G 0, K58 B &) £ U TLR2AN TLR 9%
Pk BB W B AK, DHA/EPAZL T I TLR23E: R %2
ISERAK, MPAATLR2IERFRIXAEf A, ALA. ARA
FIDHA/EPAZH TLRSHE R K1k & 2 K T PAZ(P<
0.05); ALA. ARA. DHA/EPAZTLRF: N Fik &
BEETCON. PA. SAFIOAZ(P<0.05); PAATNF-
ot R 1A i 5, DHA/EPAZH A%, H & # 1L T
HAR B AR B AH(P<0.05); B85 i 177 198 B A R0 AN 1 F
FE BB N, K EE WL 4yt i E TGF-pHE R Rk &2 2 I
FARES, FEPAH AR, fEDHA/EPAZ 55 -
3 g
3.1 ARFIRMA RGN K EEFLhEE KK
AR 2H R B 220

Jig 5 32 2 v G M R 4L R ), AN D i I R 6 AL
A EANFER AR, CH 2 — 8K 2 AW
RE %, 51 TDHA . EPAZE, 1E A — LLiig /K £ [ £
TR, oK i R KA B et E . AT
FIE I AE TRDRL AR IS DA [ A 7 R B, B 5 S n i
U7 2 1) A FR AN LR B R B4 0, K33 B &0 £ 1) 70

NG B R B B2 5w, {H R334 1 8 e
A E A KFR LR E 2 BT RE S, XK
Z BRI R AE MK A b TR, B &6
FCRE ST AN AR, 75 MR A, I B R R
st K e ™. WK 4 ok, DHA/EPAZL
FARAZ T H At AL #E2H , iX 0 B DHA. EPAF
ARATERgK f (1) 0 TARNIR, kA KA A
(3 1R IS 2T 24BN — 5 B 0 7% IR 0T BRI, T
DASE = K ZE L4t 3G B R R B A KR . XS
1e8Fi(Lateolabrax maculatus) WKMEFR(Dicentrarchus
labrax) V% (Macullochella peelii)%5 FAH— 8",
DHA/EPAZH {1 18} 22 BUR AR, T 8 3 B e,
X ] e U W E DR AR I 75 I DT IR, R G T4
B R R B VAR, HET R B B AP
P SRFE B AR AR . BRAR AR R 20, M (i it
SR ENEEY

FEAHIE FEH, ASIF] i 107 B 1 A 2 2H I 05 0K
33 0.4 1 £ R IR 7K 23 FH K 7 it . 35 22 e, (HBE A
JIE 7 BR B A AN AN TN BE R B8, AR AR B S &
FE 2 380, T AR A IR 2 2 4D 52 FRAIK, DHA/
EPAZHFIARAZL R ZE 1IN T AR E A & &, If
H B K 7 SRR & &, X T Re & B Tl
JI77 T AR AN T A B2 s T g T T 1 R FH A 4 fi
TR B e 0 PR B R AN R P 38 e i
T G 7 F AR i A TR SR 1) i 077 1 BSCR 90 fi
BT P AR e A B M E A
5 R TR I B K AN A A OR, T RE AN
JIE B AP R B B mT LS Rk B A R, R
& — on-3K Ak 2 AN AN TG D R T DAIE I 1R Y
A U AT 5 38 RN R R 3R, (e B 1 B & R
$n%j§[30,31]0
32 ARFIRMAERERERN KEFHNEMRE
&St azopA

12 e 8 E 0] By N FLBEORL(CM) . BRAR %5
J I % 1 (VLDL). i %5 % IR £ (1 (LDL) Il i %5
JI6 5 F1 (HDL), HDLF) == 4 2 4 4% Py oAy 3 75
22 % (1) VL[] P 2t 3 3] U v, T A P o ik — 28
AR 2 i, PRt HDL R A5 JIH [ B35 B 5 8046 L,
W PR ER . T LDL) 3 ZAE A2
JUE A ) JE T B A ds B T . LR A B R S T A
MR, HLDL 5 3l Ik A A5 1R 5 ) 9%
e, JU A 4 i 8 B 57 B 4147 i, LDL> g ik iH
[it] FE E 534 1O L RO AR o FEARBIEFE R, IR Y
HM = EE(TG) A [ B (T-CHO) & & i A4 78 I i
I T 5 < AR AN U AR () 184 i 5 3 PRI, if R
HDL % & W % ft i, MK LDLY & B3 T %, JTH
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#Hw 48 %

ZALA. ARAFIDHA/EPAHIHDL S & B & E T
HoAth 354, 35— S8l FLah i - R 7T 45 A — 5L
n-3K 55 2 AR i 10 R e 0% S 3 PRI 2% TG AN T-
CHO® & T &2 & #2 /& I ¥ HDL & &5, M T-
CHO & &5 IMKLDL & &AM, B 5K, PUFA
AT L B4 M 3% LDL 3 K AR T-CHO 77 207,
X 5 SO0 F A T 45 A — 8. IF HL7E R ek
(Salmo salar LB 5T H1 A 25 AH R B9 45 3, FAEY
T B AR A, AR il 2H R ) K T B I R TG
FIHDL % 845 5 B T oyl 415,
3.3 EARFIRIN A E RS BB X AT BE RS X it 4B X &

FEYDBE A (PPARs), TEER I G R i ia . ik
AR A 2 OCE ERIMER, REMERS e 1% 15
AR, PPARaAE HPPARSS KE % B i) —
B, YR R ) Ao A T2 E g B i BER AL AN
AT G R et A A 7 A R R B R R SR AT a4 R B 1
SRR, ACOXIHE 9 PPARI T Ui 1 i 19 6 4
TEETR, 52 Fo 4t FASIE g 107 & B A 6
Fe[K, PPARyi@ 1 BEAK G 17 2o A 0 B2, DT A2 it
W5 & B, R BF  BE 6% (2 1 FASHS R 1) Rk, T
SREBPI5 PPARy St R #E R I & ™ ™ Awrot
T8 I AR AR FR S AN [ g 5 R < B, DHA/EPA R

ES[:REA ALATE An-3K 4 2 AN A DR, Ref% & 35 P& 1IK
VBN R o A 3 A% 52 A4 (1) i S A P Bl A 4 JIE 107 B4 G B2 AL, T . 3 B v T I ) o0 i A X
g 1L-1f 8 IL-8 8 MyDS$8
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& d & T & =
515 L 5 T T 5 15f
2 2 Lo z cd
E 10k- abc abe ab ab E § 1.0F~ ab abc
S o) g a
& Eost = =
X 0.5+ ) < 05k
% L | H:ﬁ 1 1 % 1 1 1
ﬂ;o%?’ S v [ v vv» \a ?Oév»»»v
2 O Fs oww@}gz = w@@ 2 O FTFTFY @Q

¥ ¥ T
ARG Wil Different fatty acids A~ [G] g WilR Different fatty acids ARG ilig Different fatty acids
NF-kB p65 TLR2 TLRS
200 200 150 b oy
cd
L5 ¢ 9— bed 1.5F l.o_a-}-) ab ab a
o abc QP ab a a

0.

AU

W
W

(=]

d
.l_
be be abe abc
1.0+
a
05f ﬂ ﬁ
1 1

0.5 H
ol Ll Bl bud Bud Bl bbby

FHXFFik B Relative expression
FHXTFik B Relative expression

SR AN o\ A N o Y2

& FFF Y ?3’?‘3"2\‘3 S
Q

AN[EIHE Witz Different fatty acids

TLRY

20 251

] 201

R %v Ov Vv yqy <§v~

MGl fg Wil Different fatty acids

TNF-o

cd bC

AHXFF3k B Relative expression

S XA Py 12
S Q%ow?y?gig

& &
AN[EIHE Witz Different fatty acids

TGF-B
20 R e

1.5 ¢
Sr cd T
ab bc =+

Lop L, a2 2

W

H il

a
& F T W FES
(@) Nt ?' \
QQ
AR HE Witz Different fatty acids

FHX}Fik ERelative expression
3
FHX}Fik ERelative expression

O

d
15F L
1.0
05

0 1 1 1
S T

Yoo w?’ @ égv

ARIREIZDifferent fatty acids

o 3T

O% F X VV@G

v$

AR g Different fatty acids

FHXFF63k FRelative expression

QQ

B2 BRE RN AN [ I8 R S R 3 1)y 6 AR S 2 K] ER 5

Fig.2 Effects of different fatty acids on immune-related genes of juvenile turbot

CON. XfHRZH; PA. KRR A SA. T FRIRAL; OA. HIRZL; LA. WilIR4L; ALA. WWHRER4L; ARA. TE4: NI R4 ; DHA/EPA. -+ BN

IR/ — R TR ER A

CON. control group; PA. palmitic acid group; SA. stearic acid group; OA. oleic acid group; LA. linoleic acid group; ALA. linolenic acid
group; ARA. arachidonic acid group; DHA/EPA. docosahexaenoic acid/eicosapentaenoic acid group
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b — e A R A 45 SR — 3,
3.4  (ARAIRINAEAE BB X AT BRI S AL IEARAY
A

05 PR H 2 (ROS)RE 2 A8 B, x4 i AL
EEIE AR ST MR ADNASF55, A4
VIR AERK R G 23— @M. N REE
1 HH 3 5 8 5 R AR i AR S ST AR R A, B
SR EEYE . PR, MDA & & 7] LUE A —T A
TIPS L8 52 B A PR o A AR
TMAEASEES A, TR IR 10.5% I ARAFIDHA/EPA
92/ e 7 R 2 2 e v T R A A AU =
BERR TN BEE, X5 H A T4 R
— ™ 3t H DHA/EPAZL [ 54 HL A4k B ) Rt
A A BT 1 380 B v, XS FRATTSE BT A HE I 4
AR, — & E 06 75 R R v LARR & f AR K BT
EAbAE 1. TR R AN0.5% I PAT] DA R 44 fr)
PUEALRE 7, 1M 75 PRI TRDRR 8 DA AR ek mT DL S 28
BEAR N B & B, EX M e e h LB EZE R,
X G IRAT BT 5025 B A R, TT RS R E A 2 )
TETE 22 52 BT 300, B AR R A Dy — Fh v 0 i 17 12,
AU T TS AL e IR — 2 il
3.5 AR AR E RS B BR X AT AR S M X B E
EopAl

IR SR B IR F- o (TNF-a) 2 — Rl LA 1 5 J80E
NP A0 P R, 6 T 4ERR LR S RS 2
AR e T A0 K- 1p (IL- 1) 1 5
T I 20 B 10 B T A M, S B A Bh M TR EE 4T i 1
(Th1)F0%H Bl Tk EL A B 17 (Th17)3& B 1 fe % =
N, A BT 1E B ARG, IL- 1B IL-8 7 G 7 A T
AR EE (R D R, NS A
n-3 LC-PUFARY f3 v] DL 2 [ AR B 40 i A 25 -1
(IL-18) AR A FE IR F o (TNF-0) [ 265, M 1 56
WU S ThBelY. FIRE, 2 SEOe i RT 9t 45 SRt 5
7~, ALA. ARAFMIDHA/EPAY 2 2 51K T TNF-a
FIL-181) 3 R R 15, iX R BHLC-PUFARE W A %42
1 K B4yt R R v
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DIETARY SUPPLEMENTATION OF DIFFERENT FATTY ACIDS ON GROWTH,
LIPID METABOLISM AND NON-SPECIFIC IMMUNITY OF
TURBOT (SCOPHTHALMUS MAXIMUS L.)

DOU Shu-Guang, LIU Cheng-Dong, WANG Xuan, ZHOU Hui-Hui, MAI Kang-Sen and HE Gen
(Key Laboratory of Marine Culture of Ministry of Education, Ocean University of China, Qingdao 266003, China)

Abstract: Due to the continued strain on global fish oil resources, the utilization of alternative fats such as vegetable oil
in aquaculture feed has gradually increased. However, there are differences in the types and concentrations of fatty
acids between vegetable oil and fish oil. In order to reveal the effects of fatty acids with different chain lengths and
degrees of unsaturation on the growth, lipid metabolism, and non-specific immunity of aquatic animals, juvenile turbot
(Scophthalmus maximus L.) with an initial body weight of (8.00+£0.20) g were selected as the experimental subjects in
this study. Eight isonitrogenous and isolipidic compound diets with different chain lengths and unsaturated levels of
fatty acids were set up: control group (CON), palmitic acid group (PA), stearic acid group (SA), oleic acid group (OA),
linoleic acid group (LA), linolenic acid group (ALA), arachidonic acid group (ARA), and docosahexaenoic acid/eico-
sapentaenoic acid group (DHA/EPA). The experiment was conducted in a recirculating aquaculture system at 18°C for
8 weeks. The results showed that with an increase in dietary fatty acid chain length and unsaturated degree, the weight
gain rate (WGR), specific growth rate (SGR), and protein efficiency ratio (PER) of juvenile turbot exhibited an increas-
ing trend. Notably, the ARA group displayed the highest WGR and SGR, while the DHA/EPA group exhibited the
highest PER. Dietary variations in fatty acids had no significant effects on the ash and water content of juvenile turbot
(P>0.05). However, crude protein content increased with rising fatty acid chain length and unsaturation degree, whereas
crude fat content decreased. Moreover, as fatty acid chain length and unsaturated degree increased, the plasma choles-
terol (T-CHO) content of juvenile turbot gradually decreased, while the plasma triglyceride (TG) content was the hig-
hest in SA group and the lowest in DHA/EPA group. Plasma low density lipoprotein (LDL-C) content decreased with
the increasing fatty acid chain length and unsaturation degree, whereas the high density lipoprotein (HDL-C) showed an
opposite trend. Further analysis of lipid metabolism-related genes in turbot liver showed that dietary fatty acids could
control lipid synthesis and decomposition by regulating the expression of lipid metabolism-related genes (FAS, PPARy,
SREBPI1, PPARa, and ACOXI). The total antioxidant capacity (T-AOC) of liver in PA group was the lowest, and was
significantly lower than that in other treatment groups (P<0.05). The liver superoxide dismutase (SOD) and catalase
(CAT) contents were the highest in DHA/EPA group, while the liver malondialdehyde (MDA) content was the lowest.
Furthermore, gene expressions of pro-inflammatory factors (IL-18, IL-8, MyD88, NF-«kB p65, TLR2, TLRS, TLR9, and
TNF-0) in PA and SA groups were significantly increased, whereas the expression of anti-inflammatory factor (TGF-p)
was significantly decreased. Conversely, in LA, ALA, ARA, and DHA/EPA groups, the trend was reversed. These
results suggest that dietary supplementation of fatty acids with longer chain lengths and higher unsaturated degree can
significantly affect the growth, lipid metabolism and non-specific immunity of juvenile turbot.

Key words: Different fatty acid; Growth; Lipid metabolism; Antioxidant; Nonspecific immunity; Juvenile turbot
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