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(PR K225, K= B2 TR T TR S0, Wk 6 U 5 2R R 740 T 280, T 400715)

WE: RN E FR I T8 K10 B85 (Micropterus salmoides) % FEA2 2S5 43 T-HLH, B 70 BT 7 B 44
ORI BRG] ] B -6-19 TR Mg 4 AL I (Gepe) N T ) B U (Gek)A R e A Y B 2H PR BRI, B AL &
Escherichia coli Rosettal 52 25 4 1 3+ LA1 mmol/L IPTG (5 N 2&-B-D-fifC AW ). 16 CiHEFRIAT R, 7
IR S 1 B3 AR R T KERIA . @IS GST-tagsrk Al AT (1) 5 15 4640 15 21 = 46 FE 1) Gope AN Gkl 4 22 41
ETAE, B I KREA AR R, KM/ R SR, BLIh & B A s = M AN = 2 0 2 SR Bk
(GOpcAIGekHLAR IR 43 51 K F-1:3000111:10000). Westen bloths il 2 3 K 171 BB fifi Gope A Gek 2 A 3= H 43 #i
FEFFRE A, S8 2 6 G 6 2 7R GOpe IR BH 1H:AS 5 A6 T~ A0 M A JA B, 1T Gek BRI B PEAS S HCm B AN, E8 A 77
B SIS 25 RS, BE A REE R 7K T LLO% IR A6 55 M 8% 388 11 21120%, K 11 26 i T AT o8 P2 A FRE S5 RO B g G R
FE DA () 2k S GekoK 11288 T van, AFUNE S A0 0 Ji 4 fidd O Bt 1 G L) 5 A 1) 3 S GOpe 7K TAAN AE 14% TiE #3 7K~
IR F ], B AR E S UE KR 7K T (20%) T K 12 6 T o 4 267 B -G OPIR) B AR BB AL R A T R RE#R . 4% H
R, TR A& T K I SR Gope MGek Rl 7 PE IR A 2 su B fi A, 2RI 1 1A RHE K KT FR IR 152,

IR FEGOpe M GekFE R 111 46 46 B8 RS A5 24 Rf o A v ) B 24 ) B85 1 it

KRR M NE-o-E RN, AR, AR ZwBERUA KRG
XE4wS: 1000-3207(2024)11-1835-10

hEDES:S965.1 HEEFRIAMG: A

i 26 B A2 S PIHLAR B RE B R UE, MRS S
4 xt sk K s s &Y, fE3mik
VAL, FF I i 2 0 T e A 255 ol I A T e 2 0
S B P SR IR R A i o A W BORE (Glu-
cokinase, GCK), X FR ORIV, A& 08I R i 42 1Y)
B A PRIR R, B DT A 4 R R R AN A i e
B -6-1% 12 (Glucose-6-phosphate, G6P)[375]o 8] %5 H -
6-1% IR I (Glucose-6-phosphatase, G6Pase) 71 57 i 14
GOP L R AL A &1 HE, 2 W5 S AL IS AL RN i 7 il
BRI G — B AR R N . G6Pase
781 25 W R A I J2: (P GOPC & [R] 4 A ) 1 45 il % 1
TR, A GOPCIRE — i HAT 9 VRS i 45 46 FA) A5t
W A, ZERFLE T, GCKRIGEPCTE NI

Uis B HA: 2024-04-29; 1817 HHA: 2024-06-11

EiERa S T A DR . SIS
FHEL, 2R BBER B ARG H S a5 1)
I, DA £ 36 (KR i 52 B S ™ LA i
(Oncorhynchus mykiss){E 93K B Fh, i % i -G6P
[F1) 1) TG A AE PR AN g 2 PA) £ P8 £ R T 52 BE IR
TREZEFER™ ", HX — P 5 R E A KFET L
BGAIE, HATE HoAh A £ 1 £ 28 i A5 21 78 40 0E B, T
0 RF 57 P Gkl GOope bt 748 (¥ i = 2 A 363X — 18
W7 75 HAT P AR ARG

DR JFG 3 50 o 7 P i s AR R . TG L]
) R S R E TR A A R R (M-
cropterus salmoides) T SN 3 1B % 3 22 ()% 7K #.57
B it A 2 — o DR T R PR BE R F e 0 AIC T FL A

ESIE: #H R A A B AR & (2022); P67 K2 0F 70 AE RO 3T T H (SWUS23141) % Bl [Supported by Chongging Ecological
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DL PR M 2, Dkl ek S I 10% 8 4
1 2% AL R 2 B S 8ex — g
FREAENLRIIANE 2 . BLA BT 7 B, S s e s
TRk (K T B U o gy 223 1Y, (E O 2
A AT 40 B o Gepet 3 Ik (% % K 7 BRI
P TEE 8. MaZs i, RN R & B 5%
I 2 20% 23 FEAR K 11 22 8 11Uk A GoPase v 14, {H
Lin "5 B, A EHE B 7K (0—20%) S 5 1 T
JIE HH G6Pase) G M« R Je il A I8 Bon Tk E
B K FEA SR K I SRS I h g 6pea. 1122501,
R T I TRDRFGE # 7K1 ML9.25% 4 1N 22 14.3% %
1 B B g6pea. 171K 15, H.gbpca 2/ 3R LT 2
HLR B!, g R A UK BT LR,
1, ASHIF 525 K 1 BB Geope M Gek & 4T 1 R A%
RIEMZ PR %, w7 AL RIEM T4
M r. 7FSLEEAE b, W50 T A RHE R KT R E
ST Gek A G6pe R IE (55 e F B H/KF ) B R
Wi, Hiff 55 45 S F T #8578 Gek M G6Pase 7E K 111 22 fiyi
A PR AS T T 1 A

1 #R5RZE

1.1 MR

PGEX-4T-3 [ % 32 15 #44 iRL HH A 52 5 2 R
1%, BamH 1 [RH| AR M VB (No. 1605). Xho 1
PR 1 v 2 BR N V) B (1635). DNAE £ ik 771 &
(6023). ¥ FRF £ (6210A). DNAZEAL R £
(9761). & H DNASE 4 /i (R045A). TB Green”
TR TaglH(RR820A)FIRNAiso PlusZH#iki(No. 9109)
) 3 TaKaRaE Y+ R (AL HO) AR A7 o GSTHRZE
A AR & (P2262), I 1K 58 4 e 71 (P2036)-
3 A 58 £ 7 (P2031) IPTG (5 P4 3E-B-D-Aift
FFUHELF, ST098). 5 H i i PRI YL 43 (P00 17)
BCAZE F ¥ B2 2 X 71 & (P0010).  1xSDS-PAGE
A RS M (PO015A). 5xSDS-PAGEZE A E
FESZ M (PO015) . SDSZ i i (PO013G)H & 1 il
17 (P1005)IH H 3 = KA H R AL ) H R A
#) . Escherichia coli DH5a/Z 32 541 B(CB101). E.
coli Rosettal 52 75 41 g (CB105). iz [a] iz ik 7] &
(DP209) ATk /MR E(DP103)1 5 RAR A AL AL
AL HMRAT . GST-tag 5w 1A (30901ES10)
A B AR (R R A R AT . p-actin
SR (GB15001) H ZE 4k /R AE MR RO A BR
A . HRPHRIE L P/ R IgG (WB0176)FIPAGE
PRI i 7 £ (WB610C) I [ B B A P R (L
HE MR AT . BiAE 2 15 (A600669-0250) 1 H 4= T
AW TAE(EERA AR A F . PVDFE(0.45 um,

BS-PVDF-45)Ily H == 75 ] BH 4 AL 5 E R A Al .
4—6 J& 1% SPFZL KM/ BRI H 1738 7 Sk SE 50 30 4
(A BRA ], BT 9256k 72 2538405 74 me K24 3h
YIMEERZE L2 (PR L E

12 5%
FRIESL KO Ee4h (241 )W HE N E

PRI 99 2 A8 b 2 J (B ) 0ol 5 ARl i P A R
A I BRI ED)AR AR, 242
W0 EH R — KPR MDA R A, k. A
ek N v S CA P b i L e S A R E B R e |
BHE BB BRA A DA R A, K 474
U, 108 F B IR I ] R4 T 34 SR
TRRE, JER K20 99 8% 14%H120% (37 1). K
KT B &) £ 8 77 2 ), 1 I R 5 MR e A R ()
RIGRERGRATNDNH K. BIREH G, LI
& — B K 1 2 5 &)y (29 6.4 @b AL 43 BiC (RE T
202) % B 94N B B T AL R B TR K R GE .
Fr5E S 56 ) A5 R AR MR X (EAF9:00, TR 4F17:00),
HERWME. EQHFELIER)G, Kk
AREr24h, BEARTREE (8% 14%F120% 1 ¥ 2H S £
R AR B 4y ) 41 9825, 80.9F178.4 g), FHELEEHNL
W6 8 A% FI MS-222 8k I, . o35 1 %' PR I A3
SE LA, T 42 3 A 35 SR I 4H 23 (8% i Ay 2H R AE AT
RS OIS ULPALRD 38 247, R G R &
—80°CIRAF - FITA SLie i #2358 705 v K3 e

® 1 IWERESREFREBTIR
Tab. 1 Formulation and nutritional composition of the experi-
mental diets (dry matter basis)

J& BHngredient (%) S8 S14 S20
KZ JEFCassava starch 7.00 14.00 19.00
i;%lﬁﬂ‘siﬁ%‘fMicrocrystalline 6.85 6.00 1.69
M AT#1 Zeolite powder 6.84 1.69 0.00
HAhOthers' 79.3 79.3 79.3
H 774 iProximate composition (Analyzed, % dry matter)
7K 43 Moisture 7.93 9.85 9.64
#5E (H Crude protein 49.1 493 49.8
FHLHE Wi Crude lipid 11.4 11.6 11.6
JEA Starch 8.13 14.1 20.1
K5 Ash 18.3 13.6 12.0

TE: B 34.0; TR 7.50; AR LRY. 15.0; 1 PIR. 13.0; £
. 2.40; T 2.40; BEER A4 2.00; Z4EZ . 2.00; 4EAFR
CHERRTE. 0.20; FRZR. 0.25; SUALAHEL. 0.50; BiJE 7. 0.01; HL5
L7, 0.05

Note: ' Fish meal. 34.0; soybean meal. 7.50; wheat gluten.
15.0; chicken meal. 13.0; fish oil. 2.40; soybean oil. 2.40; mono-
calcium phosphate. 2.00; vitamin and mineral premix. 2.00; VC
phosphate. 0.20; methionine. 0.25; choline chloride. 0.50; antisep-
tic. 0.01; antioxidant. 0.05
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HEpGEX-G6pcMpGEX-Gek B FiL 4

FENCBIH T # K H i fg6pe (g6pca.2, F3x'5:

ON246072) Ml gckkE K (6 5% 5 : ON246073)1¥]cDNA
F¥ 5, 1§ FIDNAMAN 6.0% /4 il 4w i & S L e 51,
i@ i Protean 7.1.0F0ChimeraX 1.4 17 #71 2 A &
AL A = 2 45 44, F1| FH SnapGene6.0. 2 3K 14 52
B A7 A, % F Primer Premier SE % 11 PCRY ™ 14
5190, 5IYFFI IR 25N

R4 B 1T ik 7 1254 FH RN Aiiso PlusZ2fi#
WU 2 [ B RNATR I e IR BT o AR HE 0 i 5%
A BV, K S RNA 4 5% A cDNA, f# FH s R B
DNAXK A B 1T H b2 K cDNAJPCRY 1 . PCR
SNAR (50 pLY L & 2% PR ELAG 25 uL, by R
5% 1 pL, cDNARHR 2 uL, JoBF/K21 pL. PCR/

N 24 : 95°C Smin; 95°C Ss, 60°C15s, 72°C 2min,
374G, 72°C 10min. 2 J5 15 FH 1.2%F Bt i bt
JB2120 V K 40min, {57 R0 Wil ) & ml i H 1) 2%
o FIFHBamH 1 F1Xho T [RHIMEARZES N )87 5
X pGEX AL 8 A4 A =] e 7= 4 1E AT XU D), 4 B&
DNAZE A A 77 & 18 BH 2640 B U 77 2 1 46 0 R B
P HEDNATE 2600 & U0 B K B ) J5 I p GEXE A4 Al
PCR&=W1:3IR 215 16°CERE . K iE R &
W R KL AL TEE. coli DH50UR S 25 40 I, T8 W4 A
TLBYHR, 37°CH; 5% 14h. PRECEA H VR AT B )G
PEHUFRLBEATPCREE 5, B4 TAY TR (L)
e R A =
BERIEGopeMGekELEH F T IE
Hiff 1) 55 40 J5RL DA K 25 5 R 4y il B AR E. coli
Rosetta/ 2 & MM, BRI TLBHR, 37°C ¥

#2 S19F%
Tab.2 Primer sequences
4 FRName 5|97 %|Primer sequences (5'—3") 1B KTy (C) 7= #Product (bp)

L R # A M 2 Truncated expression vector construction
pGEX-G6pc-F

CGGGATCCATGAACGCTATAATGGACACCATGC

pGEX-G6pc-R CCGCTCGAGTTACATAGCATGTCCAGAGGGGCTG 60.0 380

pGEX-Gck-F CGGGATCCATGCCGTGTGTCTCCTCTCAT

pGEX-Gcek-R CCGCTCGAGTTACTCCGACTGGATGAAGGTG 600 1394
SEI 3% )6 %E B PCR Quantitative Real-time PCR

gbpca.l-F ACTTCCTTCGCTGTTGGCTT

gbpca.l-R ACCCATGTTACGCAGTAGGC 605 150

g6pca.2-F TTCCCGCTTTGGTTTCACCT 61.0 195

gbpca.2-R AGTCTCACAGGTCATGGGGT

gck-F CTCGCTCTGCTCGTATGT

gck-R CTCCCTTCCTCCGACTG >0 207

pepck-F ACGTCAACTGGTTCCGCAAGA 65.0 142

pepck-R TGAGGCAGGTAGCCCACAGC

pfkla-F TGCGTGGAGGGAGTTTTG 2.0 176

pfkla-R CTTGTGTCCGTGAGCGAG

pk-F CGCTCTGCCCAGGATGTCAAAG

pk-R CAACCATCACGCCGTCACTCTC 650 142

gys-F TTATTCTCTCTCGCTCCCG

gys-R TCTGCCTATCACCTGCCTC 620 150

pyglF AACCAACGGCATCACTC s »

pygl-R AGGGCAGCATTATCAACA

glut2-F CTGGAAGAGATGAGGAGAG 575 155

glut2-R GAGCGGATAAACAGAATG

eeflal-F GTTGCTGCTGGTGTTGGTGAG 60.0 156

eeflal-R GAAACGCTTCTGGCTGTAAGG

TE: gbpe. Wi & HE-6-BERR B HE AL L gck. %1 B, pepck. WRRRIT B T4 BRI PSS, pfk. WEIR RN IR, pk. T3 BRI, gys. HE

JRE B pygl. VB RS ERILEE; glut. W HERR B E (; eef. FUAZBN R AEMH K+

Note: g6pc. glucose-6-phosphatase catalytic; gck. glucokinase; pepck. phosphoenolpyruvate carboxykinase; pfk. phosphofructokinase;
pk. pyruvate kinase; gys. glycogen synthase; pygl. phosphorylase glycogen, liver; glut. glucose transporter; eef. eukaryotic translation elonga-

tion factor
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F214h. PREUH B VRN HAES mL ks = 137°C
i 925—10h, Z J5¥ W BN 1200 mLy A& 77 5
H137°C 5 77 292—3h (B B ODg¢=0.6), 1+ & ¥4
HZE16°CLL TG, ALK 1T mmol/LIIPTG,
fE16°C+ 120 r/minf) 264 N IE R FRIE(ZI12—
16h). £ IE] 2 AR 2 IPTGE ST A1 5 5
() B8 8, 12000 r/min 0 10min/5 3 & 5 A
1xSDS-PAGEZE [ | #F 22 i ¥ W 4T &, 100°C #4
AP 10min & 347 SDS-PAGE#E I L 1k i1 2% T =
WLt KA E H I A IS S RIEH .

@ik, LEEG6pcGekELHLEH 20k
££(4000 r/min, 20min)Z PTG Ih 15 G %15 5 B H
A, IIN10 mL PBSZE ik 5 2 B 4k, 18 FH iR 7 J 4t
FRLRY B2 ML UK 7K I 6 75 5 1 T A7 (40%. 20 26, T4 3,
(B &x6s, T£10min), Z J54°C+ 12000 r/min &5 (»20min,
a3 WG 4 3 = U AN 3 W3 4T SDS-PAGE I %5
W R e (0 4 e FALR (I 3Rk, IREFH GSTHR S
F A RA S, K1 mLIAF I GST-taglifh
b ZR A FH PBSZR MR ¥ 3 UK J5 NN 2210 mLAK; &
Ja i _EEW, 120 t/mindK B 2 5)3—5h, ZJ5 %N
S AN Z M A R JF FH PBSZE M P ¥4 5S—8 K o Pkt
J& TE 2 M AL N 500 uL 7 GSHIF 3 it 22 1 i
(50 mmol/L Tris-HCI, 150 mmol/L NaCl, 10 mmol/L
GSH, pH 8.0), 2218 & 5J2—3min /5 W4 Bl W, &
2P 3—5 5, BUE &% B H T SDS-PAGEH,
ORI 25 1 s 0 et B 5 8 FH GS THRZE P AR X 46
W r= W3t 4T Western blot £ %€ -

FZRIEGOpcFIGekZ A XSFTKM/)D
L AT SR S, B IR S s 2 1A (R BR PR JA o 38
IR Babt G EAEAS B IKEEER
11V A A VR 5 48 s ST R, LAk 28 T BORS 3
(1) 7L 751 EL ¥R 7E 7K Hp A B TR AN 850 X6/ BR AT B
Jos VE S (BF R VRS 30—50 pgt A); Hi2—4atm s &
HEASHRATEER RS IR0 G XS
/N BR AT G s v A (B R 5 10—30 pgkE F); 2R
S AR IS EHE O REH30—
100 pet F). Bea LR B 1R G K H SR RR R 71N
B, ARBRR I 5 =W CE 1h, B4 CEE LR, 4°C.
4000 r/min /0> 20min i Y5 L3 B R 1) 45 1 2 50
PR . BT SE 6 I FE 28 I 7 R K A s A HE

T2 IR CHLE

IR AEEE PCRIA] b 3¢ H fir ik 77 1542
HYZH 23 1) I RNAFF 10 % 5 cDNA, #%1: 1011t
%1 FHDEPC/K K cDNAM BE, SR 19 1 5 ¥t 47
SN 56 E BPCR. PCRAK R FIFE P4 TB Green”®
TRV Taq P (3075 £ 150 B BL AN [R) 51 P 1 38 LS

HEATBEE o mRNA 538K Lleeflal (EAZ B AL
1 R T 1l )VE 9 4 2 3 R 3 30 47 05— 1 b 31
H b 5 K] 10 AH 6 2Rk AR 4 DL A 5 R=
2PN R ST T R DR 1 2 AE 98% —
104%.

EHRENTE Western blot B K 1 22 i 7 ficf
JIF4L 28100 mg, N1 mL Fiv4 [ SDSZ RN & H
it 400 410571 J5 78 20 W B 2EL 4, A P 7 O 4 R e
BLUK 7K ¥ 168 75 1 B (40% ) 2%, T4 2s, [A] &8s, Ft
2min), £50J5 B EIE, 1 FHBCAR FH A B
F &I 5 B H IR RN N SxSDS-PAGESE (H I ¥
SE M, W TR A JE A I R A TR, T-80°C
Iy BEARAE . T 20 W Gepe )4 23 5 1 BE i 5 iR AR
P£30min (Gopc N I 8 (1, A& A i A8 1%, & il
Il IR A R 2 AR, 38U TRV
a fr B 45 ), A 8 AR 100°C 48 1 10min.
{4 FHPAGE R 3 & i 1K 771 £ (10%) 1] % SDS-PAGE
HEIRE, IO A 5 12547 ALK (80 V, 30min; 120V,
60min) A1 %% I (100 V, 70min), %% E J5 ff FH 5%/ g
A d A2k, —4°CHE & R, YEiR S FTHRPAR I
(1) Pt % 6 0% B 2h, BRI S 55, {6 B Image
TN & 255 K FEAH

X EGopcFIGek% 5 [EHL A 1 H GSThx
LR A EAEA AL ARER & E T
FE LA 3E 1T Western blot%5 5€, Hf & FiiAF 21k ¥
il £ PR $E 2 A LR R, A8 T 2 8 gk AT
Western blothill, 7> ik it . {3/ 2 5 g
] 7 JF2H 21, 5 2 ZE 4 R AE R (DO A R A
AIHIEA YD Fr, & R g AT S e e o G
o, B H bR ER IR 40 A 5 AL A I

it I SPSS 23.08 44 3 AT HdE 4>
Mo ol DLT ¥ (E 45 #E % (meantSD) R 7~ . K H
H P A Kolmogorov-Smirnovi 46 73 #r £ 48 1) 1E &
9345, Levene 36 70 Mt 77 22 55 1, B[R 25 7 2 /0 i
(ANOVA)FI Tukey % 55 £ 56 SR Aify 7 A 38 (1] 1) ¥ 2%
ZE 5, BAREE KT 0.05 (P<0.05).

2 4

21 FUNEBRIMERER

2SI IGUE, K B GopcMIGek ) &K & H
BIARBEARITPGHEE. coli RosettaZ il 7 4 i 5 K ik
(M= BB R JER). WRIEGopcMGekE [ Bk I
JR A = 2% 5 R T e R e e R (B 1), kB SR T
N B Coig H 2K PE . PrJEtE. my 28 fER T w] K
PR A v 1 2 B R X I, K GOope i Gek £ 1 # J %
15 o GOpeBUHUER 1—121 1 F R, Gok il HU A 1—



114 B g KO B85 GopcIGek R RIE . Pk & B ARBHE R K T3t H ik 5 m 1839
ASONMRIETR FMGekEHEARFHEEFTHE LR —, FHEH
22 EERESHAWE AER R

LK I 52 ' BT 2H 23 () cDNAH AR AR, SR 36 2 24 L£TEEEEH

59 5, PCRY ¥ g6peflgek B8 F B . HLIK
K 25 SR & 27K, g6peRll gk DR =4 43 5l
N380F11394 bp. g6pchilgek 5 7 41 ) = 40 Jii i
W7 45 B 5NCBIYR 1751 (& 365 ON246072F1
ON246073)— 5, W J5 1% R 1L B A pGEX-G6pc i
pGEX-Gek 4 i 5.2

23 RiEMAHEHEEFEH

¥ pGEX-4T-37 #% i ki & I 5 1E 7 1) pGEX-
G6pc MIpGEX-Gek B 2H i s 4% Ak i3k Ik 52 A 2 Ffa I ik
ITIPTG G £k FISDS-PAGE/ M Hr. SR KA, 5
AR, pGEX-4T-3 8 Ik 4 15 T /5 1526.3 kD
Aib HH IR S PR 2% (1] 3), BB R R IA R 4t
TAEIEH . 2% KIpGEX-G6pcAlpGEX-Gek B 41 Jii
i 255 S5 4> BITE40.2H177.6 KDAb H IR S5
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Fig. 2 Electrophoretic analysis of PCR products for gépc and gck
M. DNASF T 5 E; 1. gbpc FIPCRF=M; 2. gck# IPCR=4)
M. DNA marker; 1. PCR product of truncated g6pc; 2. PCR pro-
duct of truncated gck
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Fig. 3 SDS-PAGE analysis of G6pc and Geck recombinant protein
expression and purified products
A. GopcEHHE H; B. GekE AL & A M. & A 7 T & bR
LR S BORL 2. W55 2 BURL; 3. AR 15 5 AU 540 BORE
4. R E AR 5. B S UUE; 6. BB S _LIE; 7. 4l
JEEMAENA
A. recombinant G6pc; B. recombinant Gek. M. protein marker;
1. uninduced empty plasmid; 2: induced empty plasmid; 3. unin-
duced truncated recombinant plasmid; 4. induced truncated recom-
binant plasmid; 5. precipitation after bacterial fragmentation;
6. supernatant after bacterial fragmentation; 7. purified target re-

combinant protein
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Fig. 4 Identification of G6pc and Gck recombinant proteins
through Western blot
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Fig. 9 Effects of dietary starch level on glycometabolism in LMB
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PROKARYOTIC EXPRESSION, ANTIBODY PREPARATION, AND
REGULATION BY DIETARY STARCH LEVELS OF G6PC AND
GCK IN MICROPTERUS SALMOIDES

XIA Ru, SUN Hao, WANG Kang-Wei, MO Ding-Rui, HUANG Zheng, HE Yuan-Fa,
LIN Shi-Mei and CHEN Yong-Jun

(Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of
Chonggqing, College of Fisheries, Southwest University, Chongging 400715, China)

Abstract: The dysregulation of glucose-G6P (glucose-6-phosphate) interconversion is thought to be an important
reason for the low glucose tolerance of carnivorous fish. However, it remains unclear if this phenomenon applies to
largemouth bass (Micropterus salmoides, LMB). To investigate the regulatory mechanism of glucose homeostasis influ-
enced by nutritional factors in LMB, we cloned and constructed recombinant plasmid vectors containing truncated
sequences of glucose-6-phosphatase catalytic subunit (g6pc) and glucokinase (gck). These recombinant plasmid vectors
were transformed into Escherichia coli Rosetta receptor cells and successfully expressed using 1 mmol/L IPTG
(isopropyl-p-D-thiogalactopyranoside) induction overnight at 16°C. Following the lysis receptor cells, truncated G6pc,
and Gck recombinant proteins were purified by GST-tag affinity chromatography from the supernatants. The purified
recombinant proteins were emulsified with Freund's adjuvant to create immunogens, and immunized to KM mice for
five times. G6pc and Gck polyclonal antibodies with high specificity were successfully prepared with titers exceeding
1:3000 and 1:10000, respectively. Western blot analysis showed that both G6pc and Gck in LMB were mainly
distributed in the liver. Immunofluorescent staining indicated that the G6pc positive signals were localized around the
nucleus, whereas Gck positive signals spread throughout the hepatocytes. After an 8-weeks feeding trial, the results
showed that Gck level and the expression of genes involved in glycolysis and glycogenesis in the liver of LMB
increased gradually with dietary starch levels rising from 8% to 20% in 6% increments. Conversely, G6pc levels and
the expression of genes involved in gluconeogenesis and glycogenolysis were only down-regulated at 14% starch.
These results suggested that a high starch diet (20%) could induce a futile cycle of glucose-G6P interconversion in the
liver of LMB. In summary, specific polyclonal antibodies of G6pc and Gck were successfully prepared in LMB, and the
regulation of their expression by dietary starch levels was evaluated in this study. This research lays the foundation for
further elucidating the roles of G6pc and Gek in the glucose homeostasis of LMB.
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