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WE: R T4 HF iR (Perfluorooctane sulfonate, PFOS)XT 1 28 [ i 18 35 4, I MEHEBT 5 £ ) 7 52 52 T-0.
1H110 mg/Li) PFOSH21d, MBI A7 5% A0 /. 16S rRNARE RN T S22t 8 EPCREH A
o WU B 5 8 gy T TV 765 5 K S A B R (AR AL . S5 SRR I 2R 2 1710 mg/L PFOSHYBE D f A0 T 2 B 2 i

1 mg/L, H G i () 52 me oK T ME o 1 mg/Lk 5 2H e A 01 1) 47 755 26 43 1) 09 93.3%A1183.3%, 11 10 mg/LKy
33.3%M0113.3%. 1 mg/L PFOSH: 75 18 5 1 #41 [1) i B J5 P 2 o Ae . R B AR S . 10 mg/LIK & 41
R JEL R B AR, R FE A I RIS B At i e JH 5 A B T R AR I S . PFOSERHR21d)5, WiE 4
S J AR DS D R AR BB I F o (TNF-a0)« AN 3R 1B (IL-1B) R 1A 3210 (IL-10), LA S 4 MR T2 G 5E 18] e
KEAE3 (Caspase 3)~ p53. BilkEL4IMIIR-2 (Bel2) HIFRIE R B2 & T X IR 4YL, H.Caspase3fps 35 R 15 I
1 1) i ) 08 & 3 T (P<0.05). PFOSZ: R &8I0 1 & LI 2 e, B0 1 Wil B RE 4504
JEEEF ] (Firmicutes). 2% JE 1 | ] (Proteobacteria). %k # 1] (Actinobacteriota) F1 LA 5 | ] (Bacteroidota) it #H
X = 35) 5 2 S0, T AR AT B 1] (Fusobacteria) i 3% N B . 7 J& 7K1, PFOSALFEIG I 1 % /K 147 38 141 J& (Ralsto-
nia) MV 5. 18 b6 )& (Pseudomonas) A% =F &, 1y FRAR B85 FF 56 J& (Cetobacterium) F1'S 5. 0 1 J& (Aderomonas) . HA™
Aab T 2 fip S VR v JELEE BT AU B T (F/B) IR B AR i T R AL . PROSKAL 3838 5 1 iy T8 1 1 1) 2 B R A IR AR

YiRE, (HHI55 7 R & SR R
BERES, TR sh A e R .
KA ST FELR(PFOS); iB4s
hESES: X171.5 CHFRIRE: A

90 i R (Perfluorooctane sulfonate, PFOS,
CgHF;059)/& 2= A A ¥ (Perfluoroalkyl substances,
PFASs) H 3 R 35 B 10 A LTS 44, T 19504F JF

RN R IEVEER . EER RS T
PRV I B R, 2 5 1 B T IR v
N LA AR TR KIS A 28 A
ng/LE ng/L, 2 75 &5 75 Yt [X T L& B mg/L",
20065 7 18 5 & /R ] 38 1) 7K 52 s I - PROS
W4 B Fot vk 3104385 mg/LY . PFOST VA & WSk 7E
Y, £ E LR B SR il B P Ii
oG I FIPFOS N 1.4—34.6 pg/L, HESIMARE

AEFR B S BE > RS BRI, 20064 12 H K

Uis B HA: 2024-07-24; 1837 HHA: 2024-10-12

Ly WCEMERE B
XEHRS: 1000-3207(2025)04-042506-11

o LE EPA, PFOST Y5 55 23 51 /K A= sh W i it s Ay 45 £ K S A=

MERART T BRI A RUE e iR B K3 F
T84 o ST M PR E Hh R K P PFOS A &A1
T13 ng/L, % KR E 9600 ng/L™ . 3R H — k2
AN K AR IR T T PROSTS Yeli5 Yo 2 B 1)
A, AHIH120014EPFOS 1444 843,53 ng/L".
20174F, BB PFOS FSF- 24046 Hi & 946.5 ng/
L. 20184EPFOSHE TR E IERFIN (v [ 77 45 R 41
A B AR (R AR K P4 PFOS
AW ™, 202248 DU 1145 VEIT Hh AR AL A R
FRIVA J % v 1M3.789 mg/L, He T PFOSTE Ve VL it 5
K FE PR HE % 100%, PROSHS H |
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PFOS M [ i v S S e sh ik i ki i 427,
ANTR)Hb X A5 K AE VD B L ZAPFOS & 4Rk
J95—9031 ng/g"", A1 i B PFOSI 2 58
WTEs 4, M, BT 2 e s Rk
R fadE . WF0.32 3.2 mg/L PFOSE %
2 PP A 2k F I RE i TR S G A AR K
", 1 mg/L PPOSALF S 5Bt & £ I it 4k & i
FROMEGREEN . A EE M E PROS 1 2 B BB ik
FE{HLCs, (96h)475.864 mg/L"™ . PRI A 6] & A2k
BRI A HEAHR ER. PFOSE£4 5]
WA MR E RN FERRAE ., ek
KR i BRI R A PFOSYS 4
B IR, T 0 B A 4 A 2 R AL AR 1Y) % T A
e, i, PRFOSK: 115 52 % /K 2L sh W i) i 16 7%
PEREFCE R T A H E e FH v R R .

BT 52 [ Brbr AL 41 2R (1SO) HEFF 4 H 1 £
KRB, BTz M TEHES. R
PR E SR, RO mpitE S A%
1225 IR v B AR AR, LB o RN L Bh ) < 6] 75 i 18
Z /MR TR ey D RE bt 42 & B AR S5 1, 2t
T AT AN A ) B AR

BT KA RGeS G & 4+ 1% X PFOS
PIRE AR A=) AU, A6 DI XS Y5t &
TR G, K D PFOSK: 2 55 X Bt 1 fa 47 1%
R TR PR L RORD Y TE S RS, IR R
HAEKAESYIMAEN & TG B E NI fER T

1 #RERE

1.1 RGP

TR0 BT FH B ) 0 ) [ A R 2 B K AR AR P e
FHTE B Gt 0. EIEATFERE, ¥
BE i (4—SH)E FRAEQILN TR KRG+
14d, J6HE 18 140 10h, 53K 78 0 RS €
ISR E SR K, K250 pHNT.0—7.5, Vi fil Kk
%4 (6.9+0.5) mg/L, HL 5% 4(0.256+0.005) mS/cm,
K IR FE N (185+9) mg/L (LA CaCO4it). 7E I3
], BE 1 f R K I DA E5 3% 1 B ) £ % FH A k)
PRIME2VK o ASHIF 7T 2 I8 3 76 b A AR BB K 25 S5
MR R 2 # % . PFOS (CAS: 1763-23-1, 41
FE>98%) H Fig I =R A R AR, BT
T AR, 14 R 1000 mg/LIK BER L £ S 4t
8.
1.2 PFOSHZEIRI

Y8 722 5 B S fa BE ML 2 N34, AN %
BHINEE. BRI IR AR N34 L, FL
1) ) P B8, 4 S 3 3 M A 71 %305 . LR i 4.

T BRI B Y A1 10 mg/L A58 /K, AR ngd
TR . R 5 W A6 K B2 K 6 1/2, FRFF
PFOS i 4 £ 75 15 52 /K, FoAth ikl 261k 5 8 9%
5
1.3 HFEEXRGT

TE 912141 2 85 356, BB 24hid 361006
IO BT (FET R, F T8 3 5 O B AT R
14 WD EFEHARE

1ERFE21d)5 HAT A SURAE, RFERT2405 1 4%
MRTERL, AR FE AR 23 A, i MS-222
JRR I 7714 £ BRI i 75 TG B 25 R R R AE W 18 4 23 F0
7B N Y. 1%, F10.9%4: 3 25 /K o e iz i sk i
E7ENEY, BT 1.5 mLIEHE B L&, Bk
TE4E-80°C H T /5 16S rRNATI T . 4R )5, BT EL
BRI B K — 80 B T 4% %2 B R E T
Wi ), HR A TN LS mLIC B &0
Ja R B A, RAFE-80°C H T 5 82 & 4)
Mro BENMCERAHFIREFEAZLHBNEE
1.5 BELYA

V4[] 7 TE 4% 2 58 T 1) Jip il 2 23 F B i
it 7K, S8 5 F100% — F 2R o 7K ORI I 22 5% W
RA, FXTIEHAL M TIR GG, AiEY) A, HE
ety g d B AR AT, B Ja (R A 28 T F H Shineso
F310 (Shineso, H' )M R G0 347 W &
1.6 AR EEPCRENFERIE . ATHEX
EERIEETK

4 18 TRIzolyZ: $1& B 18 41 £ i RN A F 48
TR 20 B A0 52 B RNAMR FE R4 . 4 RNA
FH I B 500 . (B Bk R R BHE  E A BRA )
S5 9 eDNA. M 3E B B KA H ARG B d o
(NCBI)$ ¥ A R BT 1 R SR BE IR T o (TNF-
o) ANEIP (UL-18) FMEAANZ10 (IL-10) RAEH
FER AN R 85 B3 (Caspase 3)« p53+ BRE4H
JR-2 (Bcl2) SR T AR R 41, FIFNCBIf 514
BT HEAT 2 8 51 Bett, rps1 IR B-actind R {E
HNWNZEER, 51 AL ERAEY R A R A\ &
B (# 1) PCRIMNAK F& (12.5 uL): 6.25 pL 2xTaq
PCR PreMix, 1 uL cDNAZERR, 0.5 pL Forward Primer,
0.5 pL Reverse Primer, 4.25 pL Nuclease-free H,O,
SE I 9% % 8 B PCRJZ M. 2 57 95°C Tl 4% 4 10min,
95°C 30s, 60°C 30s, 72°C 45s3L30MEHR, 72°C LA
Smin. &AL E R 3K, & B 7ECFX Connect ™
SEHF PCR A ll & 4t (Bio-Rad Laboratories, H )+
BEAT . FIFH2 SRR S AR A &
1.7 FAEMEMI16S rRNASEENF

B 1. AFR ISR ) i 2 SR B E R )1 A2
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Tab. 1 Primers used in this study

ElE/EA S ElkE ]l i
Primer name Primer sequences (5'—3") Usage

rpsll ACAGAAATGCCCCTTCACTG WS
GCCTCTTCTCAAAACGGTTG

P-actin ATGGGCGTCCATGACCTTTT  HWZHK
TGTACAGAGACACCCTGGCT

TNF-a AGGAGAGTTGCCTTTACCGC  qRT-PCR
TGGCAGCCTTGGAAGTGAAA

IL-18 AACGTCATCCAAGAGCGTGA  qRT-PCR
ACAGGCTGAGCAGAAGTAGC

IL-10 CTCACGCTTCTTCTTTGCGAC  qRT-PCR
TCGTTCATGACGTGACATCCA

Caspase 3~ TCGGTTCTCGCTGTTGAAGG  qRT-PCR
ACCGCTTAACGAGCCCTTTT

P53 AACCCAAATTCTGCGCAACG  qRT-PCR
ATCCAGTTTTCCAGTGGCCC

Bel2 CCTGGCGAACATTTGGAGGG  qRT-PCR
GCAACGTCCACCACCATTTG

WA AR A PR A 7 AT 4015 16S rRNA V3—V4[X
AP BETEY 805 5 HT . T S 7EMajorBio
=P E AT 8. R UG TrimomaticifE 4T i
it g, HAFHFLASHE H . UparseXt B4 97%4H
AL FIERAE 23 28 B I5(0TU) #H4T R 3K, LBk S
F#3). fFHRIE S EOTU 21T EARFR 3T (PCoA)
AHE B 2 2 4 R 43 BT (NMDS). i A Qiime 3K 14
1% Shannon M1 Simpson % #f Y 15 %K P Alpha £
FEME . [ FHRDP 2 ZE 88 6 OTUsHEAT Wl 43 250 4T,
AT 7 K545 B I M AE 1] (Phylum).  J& (Genus)
KPGe vt HE & 2R, 3 FHLEfSe (LDA Effect Size) 7>
HrPFOSTEM T LB A4k . A FHPICRUSt2 2
FOTUHHE S A4 (1 S g k47 T o
1.8 Zitoth

B £ 35 LAV #4045 #E %2 (Standard Devia-
tion, SD) FITE R 2, F K =77 %2 5 HT(ANOVA)
FTukeyZ & LW 40 BT G5 i 410 22 5%, P<0.05 4 A
HRERER, P<O.0UNWEZE %5 . {#H Graphpad
Prism P45 I0 HE AT 2 T AE I

2 #£R

21 WS&EMEEREN

S 2105 Fr, HEMEDE B 8 (10 4715 A7 AE B B
75 . 1 mg/L PROSH FE 20 Ik 6 4715 % N 83.3%, 1M
I8 893.3%; 10 mg/LifK 5 41 1 4735 R N 13.3%,
ME£H933.3%. 10 mg/L PFOS % 52 5% BT 1 i1 [ 3548
FigE T 1 mg/L. MWK 17] LLE H, 10 mg/L PFOS

A 3 () £ AN B 10K JF 46 K B AE T2, T HE £ DA 25
17RIFAEHBIAET: o 1 mg/LAH MEHE 1 1) I 25 10K
FRUG IR T IR o 3X 3 B eI £ 5P PFOS 2% % 11
iy 52 A2 BEAN A o
22 HMSaFEEANE

xR AIAR L, 1 mg/Lik 5 240 BT 1 £ 11 iz i B
JE AR, WOk B R, M R Bl 45 B
M 10 mg/Lik 52 20 Jizp Bt J5 152 W) 42 A% e, Jizp e AR UL
A o 28 P9 S A 2 A A A, T A AR
TR S A S R B O A R, JF B SRR I B
b R IRBE S, K ARSI R (B 2).
23 RATEEPCRENPID & RFEHL K. B
THEHEXERNRIE

PFOS#H & i T B 1 18 9 Ak A1 1 AH 5%
RERHERIEE. WE 3A—CAJLLE H, 10 mg/L
PFOS% i & & $em | i 2 TNF-a. IL-1BFHIL-
10 (P<0.05)FE A 1 ek /K-, W IL-1035 K71 mg/L
WEHEA LRES, HERAML LR EER
(P>0.05). 10 mg/L PFOSIK F 4 TNF-a. IL-1B#1
IL-103E R R IA B35 W2 5 T 1 mg/LIK B4 (P<
0.05). TE2NIRFE F i T, Mt 8 TNF-a. IL-1B
HIIL-10FE PR 215 5 25 vy T MEVE, (H PR 2 2 [B) G Wil 2%
Z 5 (P>0.05). MIE 3D—Fu] LAE Y, T AR
Caspase3~ pS53F1BcI27E 10 mg/L K & 4 1% 1A
BT EE T AR (P<0.05); 1 mg/L ¥k & 4+ 1Y
Bcl2 03 5 T X R A, 1 Caspase3 p535 X% R4 TG
i3 75 55 10 mg/Lik & 41 Caspase3 p53F1Bcl2ff]
FKiLEWEES T Img/L (P<0.05). %75 T10mg/L
[ 1 81 B 1B Caspase3Mp 333 R R IE B B E & T
WEME (P<0.05), T 1 mg/LZH 360 35 D] 7 e i £ 2
EESP/RTE S
24 PFOSEEBEXNWDEMEMEMEE M
ZopA

3N FE 2H B goodscoveragedis BT A& 1, Al B

100 a
-0 Jf:fh \
80 MO0 fifh
& —A— 1 mg/Lifita
ol 8 60 | ¥1 mg/Litfi
Ik E —— 10 mg/L#f A
#HE 40 | © 10 my/Lifita
>
ES
w2
20 r

0 3 6 9 12 15 18 21
It} A Time (d)
K1 PFOS#ZEEE T B A IG R4

Fig. 1 Survival rate of zebrafish under PFOS treatment
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TR KA S . PFOSHE 75 18 7 18 B B 1) Alpha W 5 2 T T HAB 2 (P<0.01) . 10 mg/LIK LB
ZREMEAR . 1A110 mg/L PFOS 2 2 H i 3 5 11 6 i 18 B B Simpsons ZUE & = T 6 R ZH AT mg/L
JE # ¥ Shannon#g % (P<0.05), H.7E10 mg/Lik & 28 2H(P<0.05; & 4),

%1 # Control group 1 mg/L 10 mg/L
= ' \*' ;__ T e ’: = i

. L’ = }'\.
: . 7' :fh.‘?._ .

Fig. 2 Effects of PFOS on intestinal microstructure in zebrafish
BTSRRI B R SRR RO IS AR B SRR RO R LRI R
The black arrow indicates the intestinal wall; The gray arrow indicates the presence of vacuolation in the intestine; The white arrow indi-
cates damage to the villi of intestine
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0 0 0
o HE Img/L 10 mg/L Xt B Img/L  10mgL Pl Img/L 10 mg/L
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3 %-D a 307 ¢ S'F
S o Q
o L 2 1 S $ s
53 b 55 b 2B 6 -
s R 220 2 E b
= 30 F -z o2 b
4= @A a, "T'a
L] gx =&
: g o 10} S
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%‘g l’&é c ?"EZ i
SEZ 15 s c mg c ¢
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5 olee S5 < lee 18 ZNIRIN
panic! 1 mg/L 10 mg/L S 18 1 mg/L 10 mg/L X e 1 mg/L 10 mg/L
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B3 PFOSHE2 0T -5 0118 JAE K 8 12 AR 5 2 (R 30 F 52 i)
Fig. 3  Effect of PFOS on the expression of inflammatory and apoptosis-related genes in zebrafish
ERRE R A B3 22 57(P<0.05)

Different superscripts represent significant differences (P<0.05)
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K4 PFOSEE T [)i7i& i #F Alpha % FE 1
Fig. 4 Alpha diversity of intestinal flora under PFOS exposure
A. goods_coveraget54; B. Shannon#54{; C. Simpson#BL; * P<0.05, ** P<0.01

A. goods_coverage index; B. Shannon index; C. Simpson index; * P<0.05, ** P<0.01

NMDS & 8 7 A [7] A 3T B 18 B 7 58 3 KK,
X HEZH B8 7E — 2, PFOS % % 24H K 7E — k2, PCoAK]
WA IR T AL 45 B, UL PFOS AL BE J5 18 B 45 44
A — i 5).
25 PFOSERERWI&FEMEMEZHBK
MBE BT EE S

16S rRNA =738 &=l 7 45 S TR, SRR rp AR T
I J(Proteobacteria) F1 42 #F 1 | ] (Fusobacteria) A T
WEEEE, 7000 5 2147%H151%. 761 mg/L W E 4,

NMDS analysis

0.4 r A O %} 8 Control group
A A O 1 mg/L
02 r A 10 mg/L
0t o

[9\]
2 iz
= 02 | o

-0.4

0.6 L - - Q -

-0.50 —0.25 0 0.25 0.50
MDS1
PCoA analysis
04 r
oo
o 027t
= |n °
: e
z of
N
3 A
9 02
A
-04 t A

-04 02 0 0.2 0.4
PCoAl (21.5%)

5 PFOS# ik I T # (FINMDSRIPCoA 5>
Fig. 5 Nonmetric multidimensional scaling analysis and princi-
pal coordinates analysis of intestinal microbiota under PFOS

A% JE 1 ] (Proteobacteria) fll /& BE 14 | ] (Firmicutes)7)*
29 15 50%F131%, H kAT B 1] (Bacteroidota) %)
5%, #R AT # '] (Fusobacteria)Z14%. £10 mg/L &
4H v, A5 J T ] (Proteobacteria) - & % i1, £170%,
H R 2% T 1] (Actinobacteriota) %] 13%, & B [
(Firmicutes)2] 7%, UL #F 1 '] (Bacteroidota)ZJ 3%
JERERE 15 WA o T LU AEAE — e FR R FARER S
Jig i B REAL T RS, 1Z AR IR0 mg/Lik FEE 41N
6.07412.29, A1 bL Xt 8 2H.(0.74)3) BH B 38 0 (K] 6A).
M 6BV & 73 2K BT AT LAE Y, W 2 v 32
B )@ N 1 & (Cetobacterium)F1<, 5. )0 1 J& (de-
romonas), 77 M 21 15 51%F139%. 1E1 mg/LiK B 241
, LB ERE NS R ITE R & (Ralstonia), £ 1536%;
VR 2 iy R 18 J& (Cetobacterium) N4%. 1E10 mg/L
WEEAL T, 3= 5 FE o v 1 2 B ER ) B @ (Pseudo-
monas)F %' /R Wi il B 8 (Ralstonia), 77 # £ &
20%F117%; H Ik A FE 5.5 J& (Comamonas) %) 5 9%,
W K @ (Serratia) N 6%, [R k, PFOSAL P i 2%
1 B R Wil & (Ralstonia) MR i B4 & (Pseu-
domonas) AN F B, 1 FRAK T &524F B )& (Cetobac-
terium) F1< F M0 B J& (Aeromonas) FIAR X B
AR PFOSAL B A H L 154> %2 57 1 ) .
| mg/LiR BEAH & £ 1 048 28 HuAT B & (Aeribacillus),
10 mg/Lik J& 41 N Candidatus _Saccharimona. 3§
J&(Massilia) %45 KB SV KB (Escherichia
Shigella). % ./l 1% J& (Xanthomonas) (/& 7AFI17B).
P K J& (Rothia)~ AT JE(Flavobacteriaceae)
Y A B BR 1 J& (Peptostreptococcus) LR BIAK A 7y
% (Mitochondria_unclassified). £ 2 1% J& (Acidovo-
rax)s S0 E JE (Aeromonas)  JEAR N J&E (Dee-
fgea) 55 JE(Neisseria)s V)OI J&(Thauera)-
7 T IR T R (Shewanella) ‘w5 5 5 KT X TR ZH. .
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=7

2.6 PFOSHEEXIDID &EFEMENINEERZ M

T OTUHIRE TIMKEGG level2iE & IRt . 5
OVR FEZH AR LE, 1 mg/LR FE 20 75 2 5L R AR 6 A 48
(1 2 K 5 FE T AH DG Ty R 1R R = 152 Y 35 388 o, (1
B R 7 geA R, RG-S %S, BRNE
RS ARG R DG Th e A B R B R 3 A 10 mg/L
TR A 7 S R DN 3 AR R AE AR D R, W IR AR
HAD LR . BV R SR, HiE Mo g
AU ZEEFRACHEE, D T — L84 P D) REAH OC
BRI & B, R BE A RS AR S B R A
AR AR (B 8).

3 i

BEEEDT D £ X PFOSHITH 212 A [E]

PFOSTE N —Fli e A A WIS 4, A 5 BE A,
HTBEAREE 2 /1 BT, il e AR 21
WEM. REPFOST T2009EM N (LT HEA
PER LTS J B EF R BEAZ)) FEpkZE b A,
(H 5 YR T A7, B AT P I PFOS
I DUMEIR B B, (EAE B 9N 78 3] PR 8 B A 7
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Fig. 7 Taxonomic cladogram (A) and LDA score histogram (B) of intestinal microbial community under PFOS treatment based on LEfSe

analysis (P<0.05, LDA >3)
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PERFLUOROOCTANE SULFONATE (PFOS) ON INTESTINAL STRUCTURE
AND MICROBIOTA OF ZEBRAFISH (DANIO RERIO)

I Xiao-Yu, XU Hong-Zhou, LONG Jing-Fei, YAN Chen-Yang, HAN Xi-Pan and LIU Hai-Xia
g g g
(College of Animal Sciences, Northwest A & F University, Yangling 712100, China)

Abstract: Perfluorooctane sulfonate (PFOS), as the main active component in anti-fouling agents used for textile and
leather products, has been widely used in both industrial and daily settings. So far, PFOS contamination has been
detected in groundwater, surface water, seawater, and even animal tissues. It exhibits notable toxicity to the liver, repro-
duction, development, and nervous system of fish; however, the effect on the fish intestine remain unclear. In this study,
male and female zebrafish were exposed to 0, 1, and 10 mg/L of PFOS for 21d, respectively, and the changes in intesti-
nal morphology, structure, and microflora of zebrafish were detected by survival rate, intestinal tissue section, 16S
rRNA high-throughput sequencing, Real-time quantitative PCR, and other techniques. The results showed that
zebrafish exposed to 10 mg/L PFOS had a significantly higher mortality rate than those exposed to 1 mg/L, with males
being more affected than females. The survival rates of male and female fish in the 1 mg/L concentration group were
93.3% and 83.3%, while those in the 10 mg/L concentration group were 33.3% and 13.3%, respectively. Exposure to 1 mg/
L PFOS led to a reduction in intestinal thickness and damage to intestinal villi. In the 10 mg/L group, the intestine was
significantly thinner, villi height was reduced, and intestinal mucosal epithelial cells were swollen and accompanied by
severe dissolution. After 21d PFOS exposure, the inflammation-related genes such as tumour necrosis factor-alpha
(TNF-a), interleukinlbeta (IL-1f), and interleukin10 (/L-10), along with caspase3, p53, and B-cell lymphoma-2 (Bcl2),
were significantly higher than those of the control group. Furthermore, caspase3 and p53 expression in male intestines
was significantly higher than those in females (P<0.05). PFOS exposure also significantly increased the diversity and
altered the structure of gut microbiota, with a marked rise in the relative abundance of Firmicutes, Proteobacteria, Acti-
nobacteriota, and Bacteroidota, and a significant decline in Fusobacteria. At the genus level, PFOS treatment increased
the relative abundance of Ralstonia and Pseudomonas, but decreased Cetobacterium and Aeromonas. The
Firmicutes/Bacteroidetes (F/B) ratio was higher in both treatment groups compared to the control group. Additionally,
PFOS treatment increased the amino acid and lipid metabolism of the gut flora, but decreased the synthesis and
metabolism of glycans. In conclusion, long-term PFOS exposure can lead to structure damage to the intestinal and
dysbiosis in the microbial flora of aquatic animals, subsequently affecting their health.

Key words: PFOS; Intestinal structure; Intestinal microbiota; Danio rerio
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