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(J100)F1 B VR A 38 ZH.(YT100), LA3%oEh B AT B4 (CK). 45 5 57R: J1004L KA 55 it pH IR i, CKZH A%
Y1004 /KRB R A & 25 S, YII00H K. Y1004 5 i1 4 A 1) i1 45 i e A 4L B inse 4, IR JZE 58
B, GUIRGRIE; JT00ZHFNY J100ZH A i Jizy 2546 52 B4 005, JLJZ 55 MHI 1 1) 5 1 328 7 A0 e I P 4 e s P2
J5 T, CKAL 5 Y 10040 /i B e i, HF ik 2, Ja B iM%, YI100ZH I fs2 22 ; T100ZH A fizy 4 48 v i B v, e ik 2,
i B A . AN [E) B 38 495 35 A 9% 35 Rl GpAQPI . GpMAPKI4. GpPLA2FI GpCA235 1% i i 2 ik B8 v, 1
GpNKAI. GpALPWITERT IRk B R . 2, BRACFE AN Eh s A B4R 0 1 7 e s AR 00 gy 1 &85 g, DTG 52 17
AR KE, X — 550 R B RIRAE T H iR S A K B 1R L 7L 07 1)

RERIR): piE S, EhEshiE; ERERGE, AR

hESAE: Q178.1  ICEKFRFIRFG: A

I 1 8 88 (Gymnocypris przewalskii) & 5
TVRE A ) — b AR B e £ 2K, B R SRS
RS B ER BRI K A 17 B ) SR 3 17 i ™, i
DRI LT i 2E . AR N SRS P R AR 1 1T 4% 52
SR JERKIAEE R . B . BT AR N pH
AR 1k, 1 23 B 1 B 7 RIIBE FE R 5 LA™,
T IR 1) B Bk 52 AE SRR

HRPSE T 2 . B AR R
P ARAE TiEisk g = ™, B AT, A 6 2k
AV LE 5 IR AR R 5 7 T B AE H A BONIRA
HORE AL ™, A5 F 0 I 8 1 4 R 1 A R L
it R EE RS, oK K E AT
PNCE/E L U N = R N e R £
TR o KA I iz 1 W) A2 JE 5 =521 7K 4 R
Y, WK 4 F T AN AR N K iR 2R o 7K
FD TR N K B R 7K FH T A 784 A 7K 23 B 2K

5= B ER: 2024-09-05; 11T B #A: 2024-12-12

XE4RS: 1000-3207(2025)04-042505-10

MNHIEKIERE . B BEh B DR, K
BB E I, s & A TS E Kk, NiA
AT KRR 2R 5 HAM A HESH ) —FF, Pl 45
H o s T oy, (AR BRI RGP R 2 7,
LAY AT B AT B 28, A B Sk 5
A A IE, T B SRR il B S RIEAIE,
Fa e s 1 T AL T A K T K S B AR RS AR
AT A B o B B R A N B R A R A AR
e,

R TE R G5 — PR N L &
BN R WURRIBZ IR . B AE BiE vy,
1 b AR A R, REVRSCE TR IR, JF 7T 73 i 2
o BRI R 48, 8 22 BRI R AR IR,
TR JE IR A B TE AL I BB BT R OT, REARE 2
B, UL RN E L. FRTEESE
s R B, BeikIR B R KRR . L

HEWE: F 5 1 AR 4 (31960741); 77 5 K 5 /5 45 30 B TR 2 i 2 45 2 tH 5 — 90 3 BHRHEE 0097 700 H (2023-stxy-Y 19) B )
[Supported by the National Natural Science Foundation of China (31960741); Science and Technology Innovation Programme for
Ecology World Class Disciplines, College of Ecological and Environmental Engineering, Qinghai University (2023-stxy-Y19)]

TEH BN PR (1998—), &, WiL0F i, EENHENDEREN . E-mail: 2671436214@qq.com
BIE1ES: B12(1983—), 5, i+, #0%; FENFEERFOAEYRFENEDNEES S TAEDER TR . E-mail: liangjianws@126.com

©The Author(s) 2025. This is an open access article under the CC-BY 4.0 License (https://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.7541/2025.2024.0344
https://cstr.cn/32229.14.SSSWXB.2024.0344
mailto:2671436214@qq.com
mailto:liangjianws@126.com
https://creativecommons.org/licenses/by/4.0/

2 KR R

2025, 49(4): 042505

WLARA LS 2 1T IR RS, LAY R AL 246 AN & 7 2 A
7 TE 0 50, O3 B 0 ) A PR A K B A )
HIL AR L EH KA S5 A A SR R, 3 AR T
R R B A . B FAR T T R
FRBUENE T R IE SR, T VKIS IE N
B JABEANRIL K I RIE, o fif e sh K 57 e
R RRSERKZIE PR RTE T g 2, F
I N SRR 0 A s R T E R I 2%

1 #RERE

1.1 #

SE5G FH A H T I AR AR R 0 (78 7, R
Bt . SZESTFAATT T i AR A 5250 == Y4k 1]
7 14d, Ik K R & 3R A B 5 1) E R K (R
N 3%o), BERHFK TR IR FR R, RE 1R Tk
J9 VU N R A T LA PR 2 =) A 7= 1 9 K AL D
HHENE 1),

I oA H B ke K EZA R AR E
P A K B, B TG K R R B (] 244 (A1 4k
AR IR 2w AR R SN il TR R A
BRE 2 ) [ 1, o R v 1A 5 2.

12 75k

EhWAMBSEE  EYMLE AT a s, E
FHHE RS KIER A AT . 3 4 4, 30l
CK L HRAL, ThEF 3%0). Y100 4L(Ehpria g,
% 16.67%0)~  J100 2 (T i 20, B2 32 mmol/L)-
YJ100 2H (L AR & e 4, 2 16.67%0, Bl E
32 mmol/L), 3/~ il 18 44 I CKEH FRFE I 35 B 5 A\
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Tab. 1 Main components of feed

J% 57 Ingredient

HE O 0Ky HEAR = 60%
NEHy AN = 15%
1 A4 < 3%

G P S 5 71 5 < 12%

T IREY B = 0.8%
Yek RIREY RER = 3.3%

2 REECH

Tab. 2 Concentration formulation

Vi 40L-NaHCO;  40L-Na,CO;  40L-#/K %
Concenty;ation Fi Bit40L- JH fE40L- Ff40L-
(%) Dosage of Dosage of Dosage of Sea
° NaHCO; g, Na,CO; (g crystal salt g

CK 0 0 1.999
Y100 0 0 666.667
J100 92.594 10.368 0
YJ100 92.594 10.368 666.667

it SRS, B4 3 DN EE, a4 K
2 . Na,CO; F1 NaHCO,C #l] (NaHCO;:Na,CO5=
9:1), EhBUR BBk 21, Sea i a), 4 H g
PR AR R TT AR AT — R AT I RE), 2 R
2/3/K EFFORUIE 78 S &, P E A 2h28d (B 1)

MMRE (e E ), B SR 4K
FED pH. ¥45E(DO) A A . MhadfG
A R3 BEamA S H THEAY F, K6 EallE
[t 9 259010 pHAT DO. % 4 125 i J7 i,
BB s Nt R E (K 2), 2% Bergman
Tk, T pHAE Y, JeJe s, . 5
W2 4% % B W I B 5E 24h)5, #H &2 10%4
BET 4 CUKFRORAT, Ja AT B A D) Ao

SRNARREIKR R5F  TRIzol VAR HUAHLN
K RNA, f# ] ¢cDNA & Hi(TaKaRa, 6210A)i 7 &
B LI RNA S 6 cDNA #iR . FI | RNA
AR FEE ARG WU (SCRT 6 Je FEL K ARG I RN TR B AR B o A
DA A% RNA I SRZEAT cDNA &R, & =Y
FE S5 IN—80°C UK SR AE 4% FH

RESIYNEITEWIE ARE T i
T R PR AT5 F F AR A 56 B T RINa UK -
ATP f(Na'-K -ATPase-1a, GpNKAI). 7KifiE & A
(Aquaporinl, GpAQPI). BNEWERE I (Alkaline phos-
phatase, GpALP). 7% I Iif 4§ (Carbonic anhydrase2,
GpCA2). 22 %535 W & E B (Mitogen-activated
protein kinasel4, GpMAPKI4). T i B A2 (Phos-
pholipaseA2, GpPLA2), f# F Oligo 7.0 ¥ it % ) 5l
Wi, 2 JE AT 51 B, AR S R R . Bl
G S PCRIZ)IN 7 9 7E A TAEY) TR (LA
FRAFHAT. SIUEEH RA R RN 51EE 3),
HEAT SEI 5% 8 & PCR.

SLATR S EEPCR BT qRT-PCRAG M FE
Rl 7E 6 B ZH (CK). #h W8 2H (Y 100) B b 38 21
(J100).  h 58 i 1 2H (YT100) H 5 95 51 5 88 1T )i
. 5 W 2515 L, #% B TB Green' Premix
Ex Tag' " II (Tli RNaseH Plus)#{F 5 B0 & 20 L
RBiAR R, EF-la NN ZH K. 5% PCR #2744
}5:95°C, 30s; 95°C, 5s; 55°C, 30s; 72°C, 30s; 12°C,
oo; HEAT 40 NMEIF, BAFEMIKE 3 MEE
1.3 HIEAIE

S5 H s DL P YA ohr HE 22 3R OR, K A SPSS
13.05R 347 BRI 38 5 22 79 BT (One-way ANOVA).
H Duncanyk#E4T 40 N £ & L840, FH ek 56 L3R
ST ZE R . P<0.05 B A REZR. i HExcel
BTG5, B S K H OriginfE &



4 34 FEIPT R4 ERBRME S 5 50 R fi 3 25 A R1V5 5 R DR 3k PR R TR RO i) 3

N=30 =10 =10 =10 S FH 1 2 1RG5 140
o < R (8.13£1.45) g
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TPk Rk f AL A Tk
————————————————————————————— TAMER: (R T 5%
N=30 RIEFA R
Y100 Q‘ n=10 n=10 n=10
N=30 (1) B 2 7 BEAS: IIAE
g n=10 n=10 n=10 E?‘gﬁ (g;q);* A
7100 (2) B i& N 2= A AH
32 mmol/L) | < - 40L 40L 40L IR =t
(BepE32 mmolL) \_or J \_on f\_or S
————————————————————————————— YR BRI 2k .
N=30 m
_ _ =
Y1100 == n=10 n=10
L1667, | 0L s0L
T 32 mmol/L) =
K1 st

Fig. 1 Experimental Design
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Fig. 2 Schematic diagram of the intestine of Gymnocypris Prze-

walskii

O, @. @HH A THEED) 17 EHL
@®, @, and ) are intestinal tissues used for paraffin sections,
respectively

2 4R

2.1 AEIKIFME T ERFEARQ T

WIER 4FTR, B 18 /K SR i pH AR =, &3 &
T HAh 2H (P<0.05); CK4H 7K ¥4 B pHE fi (P<0.05).
VOFp AL HE R AR RIE AL LR E 2 7. " AR
JoliE 2H 5% 1 (P<0.05), #hBuiie 2H # IK(P<0.05) . fiH
R EmbE A b, B3 T HARAL R (P<0.05).
3t R e A e, IR A IR 2, B a2
K. ZETCZRM M e 20 5 m, SO k2, 3P
B K

Fz 3 KAEEPCRI|Y)

Tab. 3 Fluorescent quantitative PCR primers

4 HiName 5|97 4| Primer sequence (5'—3")
NKAI-F CTTGAAGTTGGTCGCACTC
NKAI-R AGTTCTTCTTTGCCATACGTT
CA2-F TCTGGATTACTGGACGTACC
CA2-R TTGAAAGATGCACGGACCT
ALP-F GCGAGTAAACCATGCCACT
ALP-R CATCTTTGCGTGTACCGTTG
AQPI-F GGGCTAAATACAATCAGTGCTA
AQPI-R ATTGATCCCACATCCCGT
PLA2-F GCGAGTAAACCATGCCACT
PLA2-R CATCTTTGCGTGTACCGTTG
MAPKI4-F CTGTAAGTCGCATTATCTGTTG
MAPKI14-R CTGTAAGTCGCATTATCTGTTG
EFla-F GTATTACCATTGACATTGC
EFlo-R CTGAGAAGTACCAGTGAT

22 HWAmExEEPREMENSYIpH. A5
IR0
HI i N 25 PpHAE Eh s 2l i e, Sh i i
1%; M N 25 0 pHE B 20 B s, 5 R 2 B (1K
J&i W N 2R W pHAE B 30 21 5 2 v T oAb Ab B 40 (P<
0.05), XFHEZH B A 1T 7 P 5 D 0 B A 0 HE 2 e
m, HE e T oAb 34, ek i A &A%, F i m
W AR R A v, RN 18 A BRI 5 N
B AT M i =, B8 4 B AR (R 5).
23 EEAMBX B SRS B RS IN
WY ToR, TR 738 by 224053
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HERZ . B T2 NIAZE RS Z AR, LA
EAFEIR YA, ARG AT 0. 5 e 21 i i
SERR A, S5 M N se B, R E 5
B, NI 2 a2 2 2 A i A S g R 4 B 4L
R 5 B F i35 BT 52 2, B 36 24 1 i 40 SUIR k3
W (EAS 5228 R B 36 241 5 P SOR 5 93 A 1 Wl 5
B G E R S — e R B T
I A iz 45 1, FLSUIR S TE I 20 A, AR 40 i
W0, F 5 R R A R R R T . A,
THRRER A RT . oA A G M A ], R i for
LT JE M Al Lo 22 5, Hohan b s = B iE AL
FEFE ST . SRR LS Bt 2 52, Aok
Mo /T 5 5 o A %, e b, B
G20 5 E B 1 AR R 40 A A T o R 4 R
B P, JCH R I8 J5 S B B R, Wk
EXL 401 B 7 X R ZEL RN SR e R B I W B R T
B JE R HED R HA R 2, B 2 bk e g
ORI SIN = 1 7E (s 53 - DA w4411 ) R b N G
5 E: A AR MG . e 4 S A
537 T ARLR A0 B S B A P A 2H R A A 2
AL 3).

T VU R B iy 0 S T 2 R L R B, AT i 3
Je B U2 BB iz i Ar v, AT R dh 53 T b i Al
Ja W(P<0.05). 448 i 5 0 X6 FEZELRD 6 38 2 2 A
Wt i, R A, Bl 2 AE R i s, JE ik,
R 18 20 7E S5 W s e, TR AR (R 6).

24 EWMETZERKFEXREEEST SRR
B ERAIE LAY FRIE ST

JE I SRR B R T R A Y 0F AH OGSk [
TE S T8 A [R]85 I 2R IA 43 M1 /IR, GpNKA THE 5 oy
6 ZEL R el 2 2 I T H SRk 3 52 B A0, AE SR
A REEYE T XRA, HEpadnriyhb Rk
i = (B 4A); GpCA2 BRAE 3 W8 4 )5 i 2 i AR
TR, FR Iy E T 0 REZH, HL /R B 18 4 )
[ 2 8 B =i (8 4B); GpALPAE Eh 8 41 /i i ik
R TR, HpdRIAERT X A 40);
GpAQPILERE 3t 4 2% 15 B M T 5 B 41, £hhia
5 W B 5 (8 AD); GpPLA2WR EE 08 16 41 11 figg A
B i 21 )5 B R A AR T R A 4h, AR RIA &
Y xt A, BAr e b gkl B i (K 4E);
GpMAPK 145 558 b 38 20 Ji5 i 38 47 1) % 55 AR T
SHBAL, HARH RIA WS T XHB4L(E 4F).
3 Tig
3.1 EREAMB I KINE KR B PREERN S
BIFZ

ARSI R K A s pH M i B (16 9T 100>
YJ100>Y 100>CK, H. Jilr 18 Sz 56 3847 B 1], Bl i e 20
1 FETS R T A 2 0 2, UE IR S R
Z W REA — B ER R, ST g =
FEGE R . fE— B4R, B = SO K,
T AE S B B — S04 7K ) 2 pHBS v T £ ) BAE AR

R4 TREIME T RN

Tab. 4 Detection of basic indicators under different stresses

B hrIndex
vl KR K KRR 14 7 % P %
Group 7K A pH Dissolved oxygen Ammonia nitrogen Nitrate-nitrogen Weight gain Mortality
(mg/L) content (mg/L) content (mg/L) rate (%) (%)

CK 6.16+0.06" 6.94+0.21 3.71+0.08" 0.830.05 1.7320.13° 20.0045.00°
Y100 7.36+0.04° 6.78+0.22 4.32+0.02" 0.79+0.09" 1.91+0.09" 16.67+7.64°
7100 9.12+0.12° 6.98+0.03 2.18+0.24° 4.27+0.03" 1.43+0.18° 56.67+2.89"

Y1100 8.54+0.05° 7.0440.17 0.12+0.03" 0.99+0.11° 1.52+0.16° 43.33+7.64°

VE: FFVEEA R _E AR B R 4 N 22 57 535 (P<0.05); T IA)

Note: Different superscript letters in the same column indicate significant differences (P<0.05); the same applies below

5 HWEMEXNEEHRERENSYPH. ARENEIN
Tab. 5 Effects of saline-alkaline stress on intestinal contents pH and dissolved oxygen of G. przewalskii
1H N B YK M FrIndicators of intestinal contents
JWr T& P 2SR I HE H7 Ind f 1
415 Group HifFpH FlpH JMapH AT AR G R R W AU
The pH of the The pH of the The pH of the Foregut dissolved Midgut dissolved Hindgut dissolved
foregut midgut hindgut oxygen (mg/L) oxygen (mg/L) oxygen (mg/L)
CK 6.40+0.36 6.5240.22 6.19+0.25° 7.4440.32" 7.28+0.24" 7.1840.36"
Y100 6.3620.06 6.54+0.09 6.26+0.28° 6.82+0.22" 6.68+0.16" 6.76=0.15°
J100 6.52+0.33 6.63+0.23 7.06£0.12° 6.42+0.09° 6.34+0.05° 6.28+0.18°
YJ100 6.49+0.26 6.54+0.04 6.62+0.29" 6.36+0.23" 6.28+0.07° 6.30£0.06°
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Intestinal microstructure of G. przewalskii under different stresses

LP. [E75 J5; BB. 8UIR%; GC. MRIRAIAY; SE. JH; LSM. A L; CSM. FRL; SM. &I T )Z; L. ki, EC. ) 4n i

LP. lamina propria; BB. striate border; GC. goblet cell; SE. serosa; LSM. longitudinal muscle; CSM. circular muscle; SM. submucosa;

L. lymphocyte; EC. epithelial cell

* 6 HEPREMEERSEDINERIT

Tab. 6 Some measured indices of basic structure of intestine in G.

przewalskii
NS A = S Jmﬂ%%ﬁ’fﬁ éﬂ 1|Grou
Wb AGroup
Index sectio CK Y100 J100  YJ100
AH e i 20174+ 249.26+= 95.32+ 73.07+
Fold height 21.45° 1225° 1375 0.84
(nm) a7 86.18+ 7216+ 88.72+ 10635+
14.95° 1499° 1053  1.33°
Je 105.26+ 8023+ 74.43+ 113.25+
1632° 1298° 086  3.26'
WUz 5 F il 87.56= 106.61= 113.71+ 105.53%
Muscularis 220" 233" 136" 1.82°
thickness e 53.23+ 89.52+ 7676+ 99.08+
(um) 3600 156" 2.52°  3.09°
J=3:7] 34.08+ 64.81+ 33.18+ 7273+
256° 006" 278° 213"

PR o BN PR 2R A0 M B 50T~ 7 AN i 1 AR
W AR, T AR R pH L B
B 21 2 ol R R B, e P RO AL B
i HE ) PR R I AR DL HE T

i 31 L5 56 Bl 3 2L 7 A B ) RO B AR T 0
N, T e 2H AR R v T AL, A R
TN AR T U AR A A A T R, A 5
A 2 A0 L ECHEME, AR IR R A m A B
AR AR E R Y HE A RS . E
JE R 8 SR A ) EA BT 3, 232 B #hia
I, #1875 T AR KB RS R YEFF 1A N8 38 T 11,
2 £k ORI 52 v B, 8 SR AR 2 2 B,
T S £ K A7 75 A0 A K T AR TS R, A
B iy d S S ia A s, e
e AR, ST R ik, HEE M ad
KRBT R B L A v T R, U B R R e
(R 75 TR ) R, LA o ) R B
R AR (A A7 — R AR
IR\ v RO B ), 5 ORI
WeEhAT NZEREOR, MBLETNE. k. NGB L
BILG, I H A1 F 085 I 7 i 1) 2
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5K 40 2K v ML P IR S AR 0L,
T B A 5 A — P 7 /K5 3 R 7, e T Rl
88 55 7 1 B S AH A B BT SGEE N A, T
LA FH B A S A 5 ) B A FH T AL, T4
FCIE AR BB A 43 AT B, e 23 i fa Ak R s Ok
PP FEART TR, KRB o B s BRI
RN E L ERmE A XTHRZH . Ehpia e, T
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SALINE AND ALKALINE STRESS ON INTESTINAL STRUCTURE AND PERME-
ATION-RELATED GENE EXPRESSION OF GYMNOCYPRIS PRZEWALSKII

CUI Yan-Rong"?, LI Jin’, YAN Lu-Yang’, WANG Tong-Gang" >, ZHANG Luo-Dan"”’,
WEI Fu-Lei', WEI Shu-Jin” and LIANG Jian’
(1. College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; 2. State Key Laboratory of Plateau

Ecology and Agriculture, Qinghai University, Xining 810016, China; 3. The Rescue and Rehabilitation Center of
Naked Carps in Qinghai Lake, Xining 810016, China)

Abstract: To investigate the effects of saline-alkaline stress on the intestinal tract of naked carp (Gymnocypris przewal-
skii), first-year naked carps weighing (8.13%1.45) g were domesticated in different stress conditions at a water tempera-
ture of (15.3%1.6)°C for 28d. The stress groups included a salinity stress group (Y 100), an alkalinity stress group (J100),
and a mixed saline-alkaline stress group (YJ100), with 3 %o salinity serving as the control group (CK). The results
showed that the pH value was the highest in J100 group and the lowest in CK group, while the ammonia nitrogen
content was the highest in Y100 group and the lowest in YJ100 group. The intestinal structure of Gymnocypris przewal-
skii in the Y100 group was more complete than that of the other groups, characterized by the intact plasma membrane
layer and well-developed striated margin. On the contrary, the foregut of the naked carp in the J100 and YJ100 groups
was damaged, with the thickness of the muscularis propria decreasing progressively from the foregut to the hindgut. In
the CK and Y100 groups, the foregut showed the highest wrinkle height, followed by the midgut and the hindgut, while
the opposite pattern was observed in the YJ100 group. In the J100 group, the midgut exhibited the highest wrinkle
height, followed by the hindgut, with the foregut being the lowest. Furthermore, the midgut showed higher expression
levels of osmosis-related genes, including GpAQP1, GpMAPKI14, GpPLA2, and GpCA2 under different stress condi-
tions, whereas the foregut exhibited high expression of GpNKAI and GpALP. In conclusion, saline and alkaline treat-
ments caused damage to the intestinal structure of Gymnocypris przewalskii, thus affecting the growth and develop-
ment of the fish. This finding provides insights into the slow growth observed in Gymnocypris przewalskii exposed to
saline-alkaline stress in natural habitats.
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