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Fig. 1 Zhoushan fishing ground and fishing operation area
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Tab. 1 Summary of equations in the multispecies size-spectrum model
RS TEHEES) Jite

Process Sub-process (symbol) Equation
AH I8 A HE PR ik Bt Prey size selection (¢) Wy w AV o (1)
Encounter and consumption ¢i(7) =exp —(ln(wp 7 )) / (20' ; )
BB AL 2 Encountered food (E) Ei(w) = Vi (w) 6 [ Ni (w) w(%)wpdwp )
PRFI 1 2 F Volumetric search rate (V) fohB* 1 ] 3)
Viw) = | ———— |w?
(1= fo) V2nkor
& /KF Feeding level (f) fw) = E;(w) )
T Ei0) + Imax (W)
£ KV #E1# 22 Maximum consumption rate (/) Imax,i (W) = hw"" 5)
AR B _ Az K Somatic growth (g;) & W) = (@fi W) Imax,i (W) = kswP) (1 = () (6)
Growth and production %t fit EEnergy for reproduction (g,) gr W) = (@f W) Imax — kswP) i (W) )
ik #Maturation (i) w \OT v ten (®)
wiw)= |1 +(Wmat) ] (W)
#h ¢ ERecruitment (R) r—r R ©)
i = Kmax,i Rep +Rmax,i

7= PP Egg production (Rep) Rep = % [N w)g, (w)dw (10)
0

SET-Mortality Wi & JET-ZF Predation mortality (p) W) =3 [ i (%)(_ LNV OGN wydw (1D
i #55E 7- F Fishing mortality (F) Fi(w) =SS; (W) Q;E (12)
BT Z Background mortality (i) Ui = Zow" ! (13)
1 = % i Background 1 s Ak # J1Carrying capacity (k) (W) = 1w (14)
BIREZS i N, _
7 i) &5 Resources dynamics at(w) — oW [ = Ny O9)] = s (9 N, O9) (15)

e F AR DR wE R, wo N RN R o9 R R SSRGS KN QTSI RE )T, ENTEEISS IR a9
PR, S FLBRMEO.6; £, o0 B C K P BRI HER e, G P IR0 @ "lyears ki e 1R 28, (8 FTERIA (84 ¢ /year; ey
SRR R0, AR BRIMELL; n i R FETREL, A FHBRME 2/3; ¢ A AR B3 I8 4, A BRI O.8; pubrAEABHEHL, A EA
150.75; Zy W15 FAET R, 1 FERIME0.6; L B IRIETR AL, (H N2-ntqs rg NVRIRIE AL 17, M FHERIMES ¢ lyear

Note: i represent species; ¢ represent time; w represent the weight, w, represent the weight of the offspring; o represent the selection
width; SS represent the selective size of species; Q represent fishing capacity; E represent fishing effort; a represent assimilation efficiency,
using the default value 0.6; f, represent the initial feeding level; / indicates the maximum consumption constant, using the default value 40 glfp /
year; k, represent the coefficient of standard metabolic, and the default value represent 4 glfp/year; ¢ represent the efficiency of offspring
production, using the default value 1; n represent the exponent of maximum consumption, using the default value 2/3; g represent the volu-
metric search rate, using the default value of 0.8; p represent the exponent of standard metabolism, using the default value of 0.75; Z, repre-
sent the factor for background mortality, using the default value of 0.6; A represent the exponent of resource spectrum, the value represent
2—n+q; rq represent the resource productivity, using the default value 4 glf”/year
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TRE (Total Relative Error), RIFL& LA X R 22

TRE = Z |1 - ratio,|
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RMSE (Root Mean Square Error), H[J 577 2 i%
7, AR ROy

RMSE =

Z }5 (logloYieldpredict - logloYieldobserved)2
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U, Yield,pegio VM2 T 7= 5, Yield gpervea ¥ FH
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Tab.2 Species and parameters selected for constructing size-spectrum model

PFkSpecies Wine(@  Woun (@ B Ruw  SS(g) o Ky O Gear Yieldperea(8)
Y68 Muraenesox spp. 13860.78  680.10 205 S5.72x10° 3401 130 050 1 SN 1.60x10°
H A& Scomber japonicus 2900.00  263.56 45 225<10° 1318 130 030 1 TN 5.50x10’
i Miichthys miiuy 2913.00  342.00 35 2.80x10° 1710 130 032 1 TN 8.50x10"
K3t Larimichthys crocea 10659.05  101.33 95 1.08x10" 507 130 043 1 TN 8.00x10"
/N 4@t Larimichthys polyactis 1081.15 3675 310 4.61x10° 184 130 044 1 GN 1.00x10"
WSk M % Collichthys lucidus 7890 1600 25 2.00x10" 080 130 042 1 SN 7.50x10”
Wt Trichiurus lepturus 5000.00 32627 20 876x10° 1631 130 042 1 SN 2.10x10"
Je3k fit Harpadon nehereus 283.00 6040 100 4.69x10° 302 130 055 1 GN 2.00x10”
R4 Pampus argenteus 6437.09 18682 5000 8.90x10° 934 130 025 1 TN 5.00x10°
PREEHELophiomus setigerus 13496.00  260.00 260 1.93x10" 1300 130 035 1 TN 1.35x10”
& 5 Cynoglossus spp. 231.00 27.00 30 3.32x10° 135 130 057 1 ™ 1.80x10’
& ¥ Solenocera spp. 210 527 10 983x10° 026 130 1.00 1 SHN  1.80x10"
SPehe T8 Portunus trituberculatus 63929 159.82 10 479x10° 799 130 162 1 SHN  125x10"
58 Octopus ocellatus 252.00 63.00 55 1.13x10" 315 130 144 1 TN 6.60x10"
Fli3K ) Pl Bycatch species 4500 616 410 1.84x10" 031 130 060 1 TN 220x10"

E: Gear TN LI A, SNOUTK I, SHNAHENT M ; NIyl

Note: TN in Gear represent single trawl; SN represent stow net; SHN represent shrimp net; GN represent gillnet
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Tab. 3 Scenarios and changes in fishing effort of different fish-
ing gear under different scenarios

Y PR B
BRI S
L, 5t SRR com(lj)}ilr?;%gn of
Scenarios Scenario effects fishin fishi
g gear fishing
effort under
scenarios
1 i X 457 4% T B Hi# |
2 a5 8% T B 2 kW B 5K 1
3 RS D BB SR R | HER
4 i X 4 497 5% 0 R R 2R 0 a4 |
5 RIS T E T k|
6 EREEGE R ANt - 2k i N G | SUINE i N E)
7 T IR 157 5% 0 R 2R GRS
8 Hal P 37 5% & N I HEIF A |
9 AR 3%S DR E kW AR 5k 1
10 HEUF P57 55 SR 2 BRI | o
11 M55 & % IR |
12 I 17 8% ) B 2 ik RZNESER
13 DR A== ek | NS N e

T AR e AR I A 5 85 ) REAE AT Al LA 4R
) 55 2 - FF50% (1.5E)8 5 % T B&50% (0.5E); “ifn HL A | H
BB g i L AR 15755 &, R G n it BB 5 55 ) &
Bt B AR 45 R R 2 i BB

Note: “1” and “]” indicate the gear fishing effort E has
increased by 50% (1.5E) or decreased by 50% (0.5E) in the past
ten years from the current basis; “Fishing gear A| Fishing gear
B?1” means the fishing effort of fishing gear A will be reduced
while the fishing effort of fishing gear B will be increased, that is,
the fishing effort of fishing gear A will be transferred to fishing
gear B

[38] [25, 39]

index, LFI)" "\ V-3 {4 # (Mean weight, MW)
SF- $4) 5 K4k 7 (Mean max weight, MMW)!' ", 7%
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Tab. 4 Ten-year average changes of ecological indicators before and after different scenarios (%)

Yt BN FSYAS o BAEYE KE&EKXEHE CPHKRE  RRPSERE REIERRER
Scenarios Management strategy Total yield Biomass LFI MW MMW SLOPE
1 M| -11.65 +15.50 +8.58 +18.97 -0.27 +17.80
2 Ha b | gk -11.95 +12.59 +9.35 +23.49 +2.13 +18.68
3 Ha ) | a0 -1.10 +19.54 +9.85 +26.58 +5.17 +19.98
4 Ha g |l -9.24 +15.21 +9.80 +19.33 +0.94 +19.04
5 TR -11.99 +12.93 +2.41 +1.41 -9.47 +14.05
6 T | HaT R —2.95 +14.98 +1.41 +1.41 ~7.60 +14.07
7 QN -9.57 +12.33 +3.77 +1.56 -8.56 +14.89
8 Halr g | —20.87 -2.33 -0.72 —6.88 -9.64 -3.77
9 HEER P | 5K 4 1 -22.99 -8.84 —4.46 -12.33 -9.77 -14.36
10 HEAER Y |l 1Y) -18.49 -2.82 +0.69 —6.82 -8.49 -2.66
11 SR | -6.90 +1.44 +1.37 +7.82 -0.18 +0.17
12 I |5k 9 —7.63 -4.37 +0.86 +9.59 +1.74 ~7.67
13 I | HE A +3.72 +4.21 +2.86 +15.79 +5.57 +2.71
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ASSESSMENT OF SEVERAL FISHING GEAR MANAGEMENT STRATEGIES
ON ECONOMIC SPECIES YIELD AND BIOCOMMUNITY IN ZHOUSHAN
FISHING GROUND FROM THE PERSPECTIVE OF MIXED FISHERIES

ZHAO Han-Lei', WANG Yangz, ZHANG Chang1 and WANG Ying—Binl’ ’

(1. College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; 2. Zhoushan Marine Economy Development Bureau,
Zhoushan 316022, China; 3. Zhejiang Marine Fisheries Research Institute, Zhoushan 316022, China)

Abstract: In order to explore the potential effects of different fishing gear and fishing efforts on the economic and
ecological benefits of fishery activities in mixed fisheries, the Size Spectrum Model (SSM) was constructed based on
the fishing log data from four types of vessels operating in the Zhoushan fishing ground in 2022. The study evaluated
the effects of changes in fishing methods on the yield, biomass, and community structure of each species in the mixed
fishery. Thirteen fishing gear management scenarios were simulated, and the interannual variation trends in species
yield under different scenarios were analyzed. Additionally, community responses to different levels of fishing activity
were monitored using five ecological indicators: total community biomass, large fish index, mean weight, mean maxi-
mum weight, and size spectrum slope. The results showed that: (1) When trawling effort decreased, the total biomass,
average body weight, and large fish resources increased significantly, particularly for Pampus argenteus, Lophiomus
setigerus, and Larimichthys crocea. The yield of Lophiomus setigerus and Larimichthys crocea also increased signifi-
cantly. (2) The total biomass of the community increased with the decrease of stow net fishing effort, leading to the
recovery of Muraenesox spp., Collichthys lucidus, and Trichiurus lepturus. The yield of Muraenesox spp. increased
significantly. On the contrary, as net fishing effort increased, the biomass resources and yield of the plum child
decreased year by year. (3) When the fishing effort of the shrimp net decreased, the total yield and total biomass of the
community decreased, while the resources of Solenocera spp. and Larimichthys crocea increased. When the fishing
effort of shrimp net increased, the total production and biomass of community increased. (4) The change in gillnet fish-
ing effort had little effect on fishery yield, biomass, and community structure. The research results provide important
insights for the sustainable use of economic species resources in the Zhoushan fishing ground, and they can help
managers better understand the potential impact of changes in fishing effort of various fishing gear on fishery output
and community ecology, so as to formulate feasible and more effective fishery management strategies according to the
importance of species and the actual situation of fishing vessels.

Key words: Mixed fisheries; Zhoushan fishing ground; Size spectrum model; Fishing effort; Fishery yield
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