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Bl A 3 Rl ke A R A | (FEEF 77, RC,
30°1829"N, 115°27'1"E, IE & #MAARE . SR T 56
WX A4 R AL A B A & (hIE 9%, SC, 30°23742"N,
114°46'41"E, 1F ¥ $E WAL ) AN EGT T 4% ) [X ) v
Pl A A PR A | G 5 TR 5%, MC, 30°22755"N,
113°4729"E; 55 R & Mt R yb YE SR 77, AR PR
B = AN FRE I 1 50 IG5 ZE0F Btk , AN IR 5 3 1k
31T (M )it 35 (R FH ) o 2 o D D 2 o [ S 6 58
1 FH R B 100 mg/LE) = & X HF s R £ (MS-222,
Sigma, 3% )X} H AT REFALEE . 285 7 To B 2610
T, B AR R A I IE, B A A IR TG
EPE R, A 11 (H)ith % (78 B )R AR SRR, & Fh 75 5H
BEAILI5AFE M, B T80 CIRFF-
1.2 KHERESKBRIEFFNE

i 2 2 HOK il & 4 (F R F) HANNA
HI98194)illl 52 /K T K 50 emAb i) 7K 5 (T) pHAN ¥
fiR 55 (DO)Y . B 1 ()it 35 (R HH e B S SRA: A5, A
F R K 88 REEKFEIRIR A, TRAT1 LAKFE T KFRES
BT R KA, 20°C % F T s B S5
o (E SIS E W g KA S A (TN) &L B (TP),
A (NH,-N). i 8 2 Z0(NO; -N) i i 38 &
(NO; -NYHLE B HUBR(TOC) 36 AL R T4 4575 >,
1.3 DNAIREN. PCR¥ ¥R SiEENF

i ] MagBeads FastDNA Kit for Soil (MP
Biomedicals, 3% B )i 71 & $2& HURE i S JE K 41 DNA,
DNAFE i 28 35 5 5 A HEL WA Wl 52 %4 1%, Nanodrop
NC2000 (Thermo Scientific, 3% [ ) il & 47 6 &
TH e 2l AR, T-20CIRIE -

18 FH 41 1 16S rDNA V3— V4 s i 1] 48 [X 45 7
M5 41338F (5-ACTCCTACGGGAGGCAGCAG-3")
FI806R(5-GGACTACHVGGGTWTCTAAT-3")i# 4T
PCRY™ 4., Witk £ (25 pL): 1 L _E3##5140(10 pmol/
L). 1 uL 'R 5149(10 umol/L). 2 pL DNA (20 ng)
iR, 2 uL ANTPs (2.5 mmol/L). 5 pL reaction buffer
(5%) 5 puL High GC buffer (5x). 0.25 pL Q5high-
fidelity DNA Polymerasef18.75 uL ddH,O. J N f2
J¥: 98°C 2min, 98°C 15s, 55°C 30s, 72°C 30s, 27N
R B JR72°C 5B Smine  H bR =4 48 2% i B e
Ji2 H ik S AxyPrep DNA#E [ 1] ik 71 &5 (Axygen,
& EHHEAT [BIUC . 13 B Quant-iT PicoGreen dsDNA
Assay Kiik 7| & (Invitrogen, 3% [E) FEEFR 1% (FLX800,
BioTek, 3£ E)XT H b5 =¥t 47 € & . 75 L3P
J&i , 4 Agilent High Sensitivity DNA Kit (Agilent, 3%
YAl Agilent 2100 Bioanalyzer 4= )l 7€ 1% (Agilent,
3BT Pk, A S T E R, &G Eu-
mina MiSeq (Illumina, 3 [E)* & 1§ FMiSeq Reagent
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Kit V3 (600 cycles) i 71 & # 172x250 bp 1 A i Wl
J¥o VL ESRISEAE S IE BIRIRRE EVHEARA R
AT TER . AWETE A A B SR A6 I S O
1# ANCBIJSequence Read Archive%{ i &, SRAE
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& FHDADA27J7 %, I 7 453 21 1) e 51 24T 2
1P AT e, R, PHEM ARG KRS DR,
RAGY 4 F 7 51 28 4& (Amplicon sequence variants,
ASVs)™. f# F QIIME2#K 1 (2019.4) 1] classify-sk-
learn®7.72:, F| H q2-feature-classifierfdi {4 347 43 Mk
{E, LAGreengenes (Rlease 13.8, https://greengenes.se-
condgenome.com) A S F ¥l BEHEAT AR,
1 F QIIME2#K 4 118 Alpha £ #EHE R 2™, BLIEAS
AN [E) F 5 A5 2R A i 2 5w G i 2 i 3 4 R
(PRl =& FE RN Z R . TF 5 Jaccard B B HiRE, it
AT FE AL FR 43T (Principal coordinates analysis, PCoA),
i FIRIE 5 vegan i ffladonis PR B3R 4T £ 70 7 22 43 #T

(Permutational multivariate analysis of variance, PER-

MANOVA)™, St AN 7] 55 R 302 75 353 50 7
RIEEpEAE RS E. BESTW

Kruskal-Wallis. Wilcoxon#k Fll 6 36 5 2& 14 ) 1] 43
M7 (Linear discriminant analysis, LDA)X W & (Effect
size)HH 45 & 3 47 LEfSe4y HT (LDA effect size)”,
HAFFRIAME A [ 2 R R . A HIPICRUSH2
B A, 2 % MetaCycU ## & (https://metacyc.org/)if
A7 W 388 20 T T B TR > B I RIS 5 A gephi
AT SR WX 28 A7 Je 2 .[37] fFHRES X E
JKF b= B B A A K AR B AL R T $E AR i AT
FaRAE B,

i FHSPSS 2703t AT Bl ge it 50 M, ALIE &
TF 40 B 243 480 FH M S7FE AR K 56 (Student’s ¢ test)BR
Mann-Whitneyt 5, —2H[A] 48 1+ 73 A 35 480 FH 5L DR 3%
75 2253 BT (One-way ANOV A)kKruskal-Wallist 5,
BE 1 LT Y E 45 HE 22 (mean+SD) R K 7k, P<0.05
FoRERRE . 0 HoriginfIRIE & TR il {4 F
M HREL o ERIRE .

2 R

21 AREIFEEN R KEZEIG
vk}

FET K b, AR FRFEAR R b K5 2 U i
Y TR ZH R N — B, 2 HH SR BE B 1] (Tenericutes)
A5 JE 1 1] (Proteobacteria).  J5 B [ ] (Firmicutes)-
JZE TR ] (Actinobacteria) F1 LA T8 [ ] (Bacteroidetes)
MK 1) Hodr, REER T AR TR A

18 40 ) Fh4h A

[172RC. SCHIMC =75 451 2 v, [ 5 2 iy
LRI B 1, =35 = B A 530 o i 2 A
#11186.03%- 88.33%A1187.01%. RCZH 7 [CJF# 1R
i 38 20 B R AR TE 1 1 1(40.20+£33.02)%F B B, J
TR T BE T 1] (34.94228.23) %A1 J5 BE 4 17 (10.89+
13.46)%; 1M SCHIMCZH v [X J5 2 U 7y 18 240 o v 2 B
I1(43.64+28.43)%. (54.56+24.34)%FJF i =, H:
VBT 1(31.87£26.79) % (26.37+25.63)% F1E
BEBE17(12.82+13.61)%. (6.07+6.99)%. Ziit 434
BB, AEAN A SRR AR 3T DA E A [R] 1] 1 i 18 40 1 5=
FEAGAE B EMZER(P=0.05). FAb, £ =F50H
PR H8 K & B RsaHF23 11 140 B4, AHX=E & 0.
TEJB KT b, B AR 53 26 8 FIAS B 8 VA R HoAth 2
FE, B R Bl K 8 (Ralstonia)« 552 B 0 B R
(Sphingomonas)~ & IR K 8 # J& (Anaerorhabdus)-
R B JE (Clostridium) F15 55 3 /K [CH )& (Prauserella)
7eRC. SCHIMC=MBEAT b K JiR 2 U iy i 1) 3
TR RHE(E 2)o LEAXSFE/N T 1.5% 40 1% 2K
B b, RCHLZF 1 T B 8 (Bacillus) 3 FE ¢ 15 (0.39+
0.33)%; SC 5 T 18 J& (Cetobacterium)~ FLFF T J&
(Lactobacillus)FFLER T J& (Lactococcus) - FE 5 i =
(1.26£2.17)%- (0.70£0.14)%F1(0.37£0.58)%. Siit
RI, FEAS R FR AR 20T A BL IS 1 & (Shewanella)
A B & (Aeromonas) FFEAAAE R E M ZE R, H

LO = = e ] =t | H{thOthers
Planctomycetes

0.8 ™7 .

Il Chloroflexi

Il Fusobacteria
Cyanobacteria
Bacteroidetes
Actinobacteria
Firmicutes
Proteobacteria
Tenericutes

AH%tE EE Relative abundance
o o
N (=)}

<
o

0

\W")\'\/"J\W”‘J
I I IV W

1 ANRIFRFEAR A5 5 B AR 7 T8 4 BT 7K~ 2 B

Fig. 1 Intestinal bacteria composition of Procambarus clarkii in
different culture models at phylum level
FEMRRE TR — AN MBI /AE L, 117K AR X = BE AR AR 3/
i F b SAS B 52 P39 18; RC. FEIRFP SR AR 2K SC. Ik 7 A
3 MC. iR, T

Each column represents a pond/paddy, the relative abundance at
phylum level is taken as the mean of the 5 replicates in each
pond/paddy; RC. rice-crayfish co-culture; SC. single-crayfish pond
culture; MC. mixed-crayfish pond culture; The same applies below
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1 4E MC2H 5 & [(1.33+1.23)%H1 (0.50+0.58)%, P<
0.05; & 3].
22 FEFEERRREZENFEME D
FEAN R FRAE AR T, o P 5 2 0 i 0 40 1 (1)
AlphaZ FEVEFRBEE G it 22 BT BB Z 7 (P=
0.05; % 1) MCZH v [K Ji 25 0 7 18 2 B ) Chao 1 F
Observed speciesti 33 = T RCH(Tpa01=1.409, P=
0.05; Topserved species=1-342, P=0.05)F1 SCHL (Tcpar=
0.730, P=0.05; Zopserved species=—0-975, P=0.05); MC
2H v [ i 2T 173 41 1R 1) Shannon i 2B B 155 T-RC
9 (Tgpammon=0-450, P=0.05)F1 SCHL (Tgpammon=0.131,
P=0.05). B4k b, WE A i BRI R S A 2R
P 5 5 ) 9 MC2H (Chao1=698.47+244.55, Observed
species=619.56+230.90, Shannon=4.01+1.18), KM
A RCH (Chao1=571.73+247.96, Observed species=
505.56+234.43, Shannon=3.81+1.34),

MC-3 k| HAthOthers
MC-2 F Cetobacterium
MC-1 E W Exiguobacterium
Sg 3 l Shewanella
-3 | Planktothrix
SC-2 I | Mpycobacterium
SC-1 F | I Lactobacillus
RC-3 [ | Prauserella
Clostridium
RC-2 ¢ | Anaerorhabdus
RC-1 P Sphingomonas
0 0.10203040506070809 10 ralstonia

FE%}=F EERelative abundance

Pl 2 AN [R) SR B A 2 o I i 2 i i 4 s 7K P Lk
Fig. 2 Intestinal bacteria composition of Procambarus clarkii in
different culture models at genus level
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3 ARFRER T R B AR i rh A TU R B A A L B
JFE T X

Fig. 3  Relative abundance of Shewanella and Aeromonas in
intestinal of Procambarus clarkii in different culture models

R 20 4 A2 [EP<0.0S K F | B 2 50, & A
[F) 7 BN 22 3 AN 3

Different letters indicate significant difference at the P<0.05 level,
while the same letters show no significant difference

H T Jaccard i B 4 FEEATPCoA 73 #T (R Beta %
FEVE 23 AT), 45 SR 3 BAS [R] 3 B A58 X e 1K iR 2 0
T8 A R % 5 RO & B RAE — (B 4). 8
PERMANOVAZ #7128, RCFISCEH 7, IK J& 2 iy
TH 21 B A VR 25 M A7 AE B 3 22 7 (F=1.259, P<0.05),
RC5MCH o, [ 51 5 0 iy T8 41 B4 4 74 &5 W A7 10 2
#7225 (F=1.577, P<0.01), SC 5MCH vt I J5 24T i
T A B BV 5 A A AE B3 22 R (F=1.377, P<0.01).
23 FRIFERARKEETFEERIF O

I LEfSe /3t 3 4 A [ 7R A AR X e [R5 %
WM Jizp 3 ) 22 S 2 R 43 2R R T, SR IX 43 1404448
25T, SMLDARME WA 3, Jhimik 254 F
FEAFAE W 3 1 22 3 (1) 43 2R BT (P<0.05), HFhRCAH

F 1 FEFHEER K EETFHE M AlphaZ H 5

Tab. 1 Intestinal bacterial Alpha diversity index of Procambarus
clarkii in different culture models

YIPhEE LY F L EZ =3
Species richness Species diversity
Zivll ) Observed
Group Chaol#5#§ speciestii 4t Shannon#i £{
Chaol index Observed species Shannon index
index
TEAFFIFE  571.73+247.96  505.56+234.43 3.81+1.34
RC
WIERSE  627.20+288.52  560.72+282.00 3.95+1.31
SC
IR TE  698.47+244.55  619.56+230.90 4.01£1.18
MC

i RPEGE NS EE AT IE, DR EE RS,
[Fl—F 8 A LA Jo b s BEROR T B 3 1 % 7 (P=0.05)

Note: Data in the table are means of 15 replicates, present as
the mean+tstandard deviation; No marked letter in the upper right

corner of the same column indicates no significant difference (P=
0.05)
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Fig. 4 Principal coordinate analysis of intestinal bacteria of
Procambarus clarkii in different culture models
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34N, SCAH 124, MCAH 104~ (& 5). RCA &
EHEEN R IR, FEREHE SRR
P & (Synechococcus); SCZHH 225 & S 0 R T
%, FEALYE E B ] U B & (Exiguobac-
terium). FUATH H (Lactobacillales), % T B [ ] (I
#T B8 £} (Fusobacteriaceae)Zs . MCHL 2 & & £ 1) 7>
KR TUH Y- B A 1 W+ B B (Enterobacteria-
les). %2 & 9.0 H (Alteromonadales), o-2% ¥ B 24
12141 4 J& (Rhodobacter) 5 »
24 FREIFEERN R KR 2T A8 4 E T g Tonl
ST

27 MetaCy U 7, 347 v [K 58 2 0 17 18 41
P PICRUSEH e T 3 M7 o o [ Ji 286 i g 18 41 1
HIE I RE: WA i(Biosynthesis)  Baf/ A H /17
{1 (Degradation/Utilization/Assimilation) I &4 i
YIRIHE & =42 (Generation of precursor metabolite and
energy). K B¥ & 12 (Glycan pathways). 43 T & 1fi
(Macromolecule modification)Fl X i /% (Metabolic
clusters) 3L 6> — L ThREE K . B— Bk — R
REIER NI R DI Re R, FHA R FREE AN A7
TE2 7 I W E A AU S . Siit oA K, 44
R W) 4 B (Vitamin biosynthesis)fX 1§} 38 % /£ RC
H B3 E 4, AP f# (Lactose Degradation)Fl12- 3,

a f Enterobacteriaceae |-
o_Enterobacteriales |-
f_Shewanellaceae |
o_Alteromonadales [
g_Shewanella -
c_Bacteroidia |
o_Bacteroidales |
o_Rhodobacterales

f Rhodobacteraceae

g Rhodobacter

f [Exiguobacteraceae] |
f_Fusobacteriaceae |-
c_Fusobacteriia -
p_Fusobacteria |
o_Fusobacteriales -
o_Lactobacillales |
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COMPARATIVE STUDY ON INTESTINAL MICROBIOTA OF CRAYFISH
(PROCAMBARUS CLARKII) IN DIFFERENT CULTURE MODELS

ZAN Zi-Ye"?, ZHU Wen-Huan’, LI Ming"’, ZOU Hong', WANG Gui-Tang"” and WU Shan-Gong"’

(1. Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of
Sciences, Wuhan 430072, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Wuhan
Aquatic Technology Promotion and Guidance Center, Wuhan 430012, China)

Abstract: The red swamp crayfish (Procambarus clarkii) is the most extensively farmed crustacean in China. The
intestinal microbiota plays a crucial role in host physiological functions. However, it remains unclear whether there are
differences in intestinal microbiota structure and function among different culture models of crayfish. In this study, we
utilized Illumina MiSeq high-throughput sequencing technology to analyze the intestinal microbiota of crayfish under
different cultivation models: rice-crayfish co-culture (RC), single-crayfish pond culture (SC), and mixed-crayfish pond
culture (MC). We also analyzed water physicochemical factors and further explored the relationship between intestinal
microbiota and physicochemical factors in the water. The results revealed that: Species composition analysis showed
that at phylum level, the intestinal microbiota composition was consistent across three culture models, with Tenericutes,
Proteobacteria, and Firmicutes as the absolute dominant groups. At genus level, there were some differences among
different culture models, with Bacillus having the highest relative abundance in RC group, Lactococcus dominated in
SC group, and Aeromonas was most abundant in MC group. Diversity analysis showed that the species richness and
diversity of intestinal bacteria in group MC were the highest, and there were significant differences in the community
structure of intestinal bacteria of crayfish under three culture models. Functional prediction showed that Vitamin
Biosynthetic metabolic pathway was significantly enriched in RC group, while lactose degradation and galactose degra-
dation metabolic pathways were prominent in SC group. In the MC group, pathways related to fatty acid and lipid
degradation, CMP-pseudaminate biosynthesis, and superpathway of lipopolysaccharide biosynthesis metabolic path-
ways were significantly enriched. Network analysis showed that the cooperative relationship accounted for 83.76% of
the interactions within the intestinal microbiota, with Erysipelotrichaceae and Sphingomonas bacteria were the main
nodes of the network. Furthermore, the abundance of Lactobacillus in the gut was significantly positively correlated
with TP concentration and negatively correlated with NH, -N concentration in the water. In conclusion, the intestinal
microbiota of crayfish includes core microbial groups mainly composed of Tenericutes, Proteobacteria and Firmicutes
in the gut of crayfish, which remain stable across different culture models. However, there are notable variations in both
community structure and metabolic function of intestinal bacteria among the three models. These findings enhance our
understanding of crayfish intestinal microbiota and provide a theoretical basis for the screening of intestinal probiotics
and their application in production practice.

Key words: Intestinal microbiota; Culture mode; Physicochemical factor; Crayfish
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