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浙江近海多钩钩腕乌贼栖息分布特征与环境因子的关系

李建雄1, 2    陈    峰1, 2, 3    戴    乾1, 2, 3    蒋日进1, 2, 3    徐开达1, 2, 3    周永东1, 2, 3

  梁    君1, 2, 3    朱    凯1, 2, 3

(1. 浙江海洋大学海洋与渔业研究所, 舟山 316021; 2. 浙江省海洋水产研究所, 舟山 316021; 3. 农业农村部重点渔场渔业资源

科学观测实验站, 浙江省海洋渔业资源可持续利用技术研究重点实验室, 舟山 316021)

摘要 : 为探究春秋季多钩钩腕乌贼 (Abralia  multihamata)栖息分布特征与环境因子的关系 , 研究采用

2018—2023年春秋季浙江近海拖网调查资料及海洋环境数据, 以扫海面积法估算多钩钩腕乌贼生物量, 使用

广义加性模型(Generalized additive model, GAM)进行分析。结果表明: 浙江近海多钩钩腕乌贼平均生物量具

有显著的季节差异, 其在浙江近海南部主要分布于27°—29°N, 122°—124°E, 水深为40—70 m的海域。影响多

钩钩腕乌贼生物量的因子为经纬度、深度、海表面温度(Sea surface temperature, SST)、海表盐度(Sea surface
salinity,  SSS)和溶解氧浓度 (Dissolved oxygen concentration,  DO),  春季和秋季最适SST分别为14—18℃和

18—22℃, 春季SSS和DO作用不显著, 秋季最适SSS为27‰—35‰, 秋季DO最适浓度为7—11 mg/L。研究可

为气候变化背景下浙江近海头足类资源养护提供科学依据。

关键词: 广义加性模型;   栖息分布;   环境因子;   浙江近海;   多钩钩腕乌贼

中图分类号: S932.8; Q178.1     文献标识码: A           文章编号: 1000-3207(2025)07-072503-10

多钩钩腕乌贼(Abralia multihamata)属软体动

物门, 头足纲, 枪形目, 武装乌贼科, 钩腕乌贼属
[1],

广泛分布于西北太平洋大陆架中层或底层海域, 在
我国台湾、浙江、闽南近海均有分布

[2], 是海洋鱼

类重要的饵料生物
[1, 2], 对海洋生态系统的稳定具

有重要意义。近年来, 气候变化、过度捕捞和环境

污染对我国渔业资源的可持续开发提出了新的挑

战
[3], 气候与环境因子的突变对头足类生物的栖息

地分布产生了较大影响
[4]
。而随着渔业资源开发力

度的加强, 头足类逐渐成为近海捕捞的重要物种。

历史报道显示, 浙江近海的多钩钩腕乌贼在近年春

秋季渔业调查中是优势种
[5], 其生物量及其季节性

分布具有较高的研究价值。

作为一种小体型头足类
[6], 多钩钩腕乌贼具有

生长周期短、生长速度快、资源恢复力较强的特

点
[7], 其栖息分布对环境因子的响应较为敏感。研

究表明, 多钩钩腕乌贼的生物量和分布特征与海水

温度、盐度、初级生产力水平、溶解氧等环境因

子有关
[8—11], 但是其资源量与环境因子间的关系往

往是非线性的
[12]
。此外, 多钩钩腕乌贼生物量还具

有季节性差异, 不同季节的环境因子对头足类生物

资源时空分布具有不同的作用
[13]
。广义加性模型

作为广义线性模型的拓展, 能够较好地处理解释变

量和响应变量间复杂的非线性关系, 在渔业资源时

空分布与环境因子间的关系研究中有很强的适用

性
[14—16]

。

为了研究多钩钩腕乌贼的季节性栖息分布特

征和环境因子之间的非线性关系, 本研究根据浙江

近海2018—2023年多年的底拖网渔业资源调查数

据及海洋水文数据, 使用GAM模型对春秋季浙江

近海多钩钩腕乌贼栖息分布特征与环境因子关系

进行研究, 为评估浙江近海多钩钩腕乌贼资源的合
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理开发和利用提供参考, 为渔业政策的规划和制定

提供科学依据。 

1    材料与方法
 

1.1   数据来源

2018—2023年4、5月(春季)和11月(秋季)在浙

江近海进行的底拖网渔业资源调查, 调查范围为

27°N—31°N、120.5°E—124°E。根据浙江近海的

水文和生态分布情况, 调查站点设置如图 1所示, 站
位水深为10—70 m。调查网具网口拉紧周长为25 m,
囊网网目尺寸为3.0 cm, 平均拖速为3 kn, 每个站点

拖网时间为1h, 由温盐深仪(Conductivity tempera-
ture depth, CTD)同步采集海表面温度(Sea surface
temperature, SST)、海表面盐度(Sea surface salinity,
SSS)、叶绿素a(Chlorophyll-a  concentration,  Chl.a)
浓度及溶解氧(Dissolved oxygen concentration, DO)
浓度。按照《海洋渔业资源调查规范》

[17]
采集及

保存样品, 在测定实验室对多钩钩腕乌贼进行鉴定

与测定, 并使用扫海面积法
[18]
计算其生物量: 

D =
C

(1− e)×A
(1)

式中, D为生物量, 单位为kg/km2; C为每小时取样

海域面积内的渔获量, 单位为kg; A为每小时扫海面

积, 单位为km2; e为逃逸率, 取0.5[19]
。 

1.2   分析方法

模型建立　　本研究采用广义加性模型(Ge-
neralized additive model, GAM)研究多钩钩腕乌贼

生物量的时空分布与环境因子间的关系, 将多钩钩

腕乌贼生物量“D”进行“+1” (为了防止生物量为0的
情况出现)后, 并自然对数转换, 得到ln(D+1)作为响

应变量, 选取纬度(Latitude, LAT)、经度(Longitude,
LON)、深度 (Depth,  DEPTH)、SST、SSS、Chl.a
和DO这6个环境变量作为解释变量。其表达式: 

ln (D+1) ∼ s (LAT)+ s (Lon)+ s (DEP)+ s (SST)+
s (SSS)+ s (Chl.a)+ s (DO)+ s (DEPTH)+ε

(2)

式中, s为自然样条平滑函数, LAT表示纬度, LON
表示经度, SST表示海表温度, SSS表示海表盐度,
Chl.a表示叶绿素a浓度, DO表示溶解氧浓度, ε表示

随机变量。

根据赤池信息量准则(Akaike information crite-
rion, AIC), 选择AIC最小的模型作为最佳模型

[20]
。

AIC计算公式: 

AIC = 2k−2ln(L) (3)

式中, L为最大似然值, k为模型参数数量。AIC越
低, 模型拟合的结果越好。其次, 利用F值、P值检

验解释变量在模型中的显著效果
[21]
。将模型响应
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图 1    浙江近海拖网调查站位设置图

Fig. 1    Distribution of sample station and water depth in Zhejiang offshore
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曲线上下95%置信区间虚实线之间最接近的部分

定义为最适环境范围
[22]
。

GAM模型使用R语言 (Vision 4.2.3)中的mgcv
包构建, 假设模型的误差分布为正态分布, 连接函

数使用自然对数。利用ARCGIS 10.6软件及克里金

插值法绘制调查站位图及生物量分布图。

多重共线性检验　　模型中两个或多个解释

变量之间存在显著相关性时, 会干扰模型结果, 被
称为多重共线性。为了排除多重共线性对模型的

干扰, 本研究采用方差膨胀因子(Variance inflation
factor, VIF)对环境因子进行多重共线性检验

[23], 筛
选可以加入模型的因子。通常情况下, VIF<10说明

解释变量之间不存在多重共线性。 

2    结果
 

2.1   资源年际变动

2018—2023年多钩钩腕乌贼的平均生物量总

体变动趋势为先升高后降低(图 2), 于2022年达到

最低值3.3 kg/km2, 2023年升高到最高点19.1 kg/km2
。

春季平均生物量为2019年最高, 秋季平均生物量为

2023年最高。多钩钩腕乌贼生物量季节间差异较

大, 调查年份的春季平均生物量显著低于秋季(F=
–2.64, P<0.05)。 

2.2   最优模型筛选

春秋季浙江近海的所有环境变量VIF值均小于

10 (表 1), 因此, 各变量均不存在多重共线性问题,
可加入到GAM模型中作为解释变量。

根据AIC最小原则选取最优GAM模型(表 2)。
当春季模型中加入的因子为LAT、LON、SST、
SSS、DO和DEPTH时, AIC最小为904.9, 此时模型

的累计解释偏差为54.0%, 决定系数R2
为0.514。因

此春季多钩钩腕乌贼生物量的模型表达式: 

ln (D+1) ∼ s (LAT)+ s (LON)+ s (SST)+ s (SSS)+
s (DO)+ s (DEPTH)+ε

当秋季模型中加入的因子为LAT、LON、SST、
SSS、Chl.a、DO和DEPTH时 ,  AIC最小为1891.6,
 

表 1   各环境因子春秋季VIF值
Tab. 1   VIF values of environmental factors in spring and autumn

环境因子Environmental factor 春季Spring 秋季Autumn
LAT 7.7 2.7

LON 7.0 3.2

SST 1.5 1.8

SSS 3.4 3.7

Chl.a 1.0 1.3

DO 1.1 2.1
DEPTH 4.0 4.8
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图 2   多钩钩腕乌贼平均生物量年际间变动

Fig. 2   Annual changes of average biomass for A. multihamata

 

表 2   春秋季多钩钩腕乌贼与环境因子GAM模型选择结果

Tab. 2   The selection result of GAM for A. multihamata in spring
and autumn

季节
Season

模型
Model AIC

累计解释
偏差

Cumulative
interpretation

deviation
(%)

R2

春季
Spring

ln(D+1)~s(LAT) 1300.4 12.3 0.118
ln(D+1)~s(LAT)+s(LON) 1206.6 26.1 0.250

ln(D+1)~s(LAT)+
s(LON)+s(SST)

1148.7 34.2 0.324

ln(D+1)~s(LAT)+
s(LON)+s(SSS)

1128.1 36.3 0.346

ln(D+1)~s(LAT)+
s(LON)+s(SST)+s(SSS)

1105.7 39.2 0.373

ln(D+1)~s(LAT)+s(LON)
+s(SST)+s(SSS)+s(Chl.a)

1107.4 39.3 0.372

ln(D+1)~s(LAT)+s(LON)
+s(SST)+s(SSS)+s(DO)

1025.4 41.0 0.390

ln(D+1)~s(LAT)+
s(LON)+s(SST)+s(SSS)+

s(Chl.a)+s(DO)

1027.2 41.1 0.389

ln(D+1)~s(LAT)+
s(LON)+s(SST)+s(SSS)+

s(DO)+s(DEPTH)

904.9 54 0.514

秋季
Autumn

ln(D+1)~s(LAT) 2601.4 2.24 0.019
ln(D+1)~s(LAT)+s(LON) 2376.8 27.3 0.269

ln(D+1)~s(LAT)+
s(LON)+s(SST)

2332.9 31.8 0.312

ln(D+1)~s(LAT)+
s(LON)+s(SSS)

2352.5 31.3 0.301

ln(D+1)~s(LAT)+
s(LON)+s(SST)+s(SSS)

2319.7 34.5 0.331

ln(D+1)~s(LAT)+
s(LON)+s(SST)+
s(SSS)+s(Chl.a)

2076.3 39.0 0.371

ln(D+1)~s(LAT)+
s(LON)+s(SST)+

s(SSS)+s(DO)

2163.1 38.6 0.367

ln(D+1)~s(LAT)+
s(LON)+s(SST)+

s(SSS)+s(Chl.a)+s(DO)

1914.8 43.3 0.412

ln(D+1)~s(LAT)+
s(LON)+s(SST)+
s(SSS)+s(Chl.a)+
s(DO)+s(DEPTH)

1891.6 44.8 0.429
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此时模型的累计解释偏差为44.8%, 决定系数R2
为

0.429。因此秋季多钩钩腕乌贼生物量的模型表

达式: 

ln (D+1) ∼ s (LAT)+ s (LON)+ s (SST)+ s (SSS)+
s (Chl.a)+ s (DO)+ s (DEPTH)+ε

影响春季多钩钩腕乌贼生物量的显著因子为

LON、SST和DEPTH, 影响秋季多钩钩腕乌贼生物

量的显著因子为LAT、SST、SSS、DO和DEPTH
(表 3)。 

2.3   环境变量对生物量的影响

多钩钩腕乌贼生物量与解释变量的关系如图 3
和图 4。春季和秋季的多钩钩腕乌贼生物量分布大

致相同。随着LAT的升高, 生物量呈总体下降趋势。

同时, 随着LON的升高, 生物量呈升高的趋势。

春季多钩钩腕乌贼生物量在SST为12—14℃平

缓下降, 在14.0—18.0℃保持稳定, 18.0℃之后迅速

升高。多钩钩腕乌贼生物量在SSS为5‰—25‰缓

慢下降, 在25‰—30‰保持稳定, 30‰以后迅速上

升。多钩钩腕乌贼生物量在DEPTH为10—70 m持

续上升, 70 m以后快速下降。

秋季多钩钩腕乌贼生物量在SST为16.0—24.0℃
保持持续上升趋势。多钩钩腕乌贼生物量在SSS为
0—15‰上升, 15‰—25‰下降, 25‰—32‰保持稳

定, 32‰之后略微下降。多钩钩腕乌贼生物量在

DEPTH为10—70 m持续上升。春季溶解氧对多钩

钩腕乌贼生物量作用并不显著, 秋季其生物量在

DO为0—7 mg/L稳定不变, 7—11 mg/L迅速升高。 

2.4   栖息分布特征

多钩钩腕乌贼主要分布在浙江近海中南部海

域, 空间范围为27°N—29°N, 122°E—124°E。2019年
春季生物量在28°N以南海域较高, 而其余年份生物

量相对较低(图 5)。秋季的高生物量海域范围相较

于春季更多(图 6), 其中2023年生物量最高, 高生物

量范围出现在122.5°E以东, 2022年生物量相较于

其余年份较低, 且分布在27°S以南海域。 

 

表 3   GAM各因子统计结果

Tab. 3   Analysis results of GAM for factors
季节

Season
环境因子

Environmental factor F P

春季Spring LAT 1.182 0.28860
LON 11.709 <2e–16**

SST 3.279 0.00472**

SSS 0.132 0.71606

DO 1.410 0.19046

DEPTH 20.062 <2e–16**

秋季Autumn LAT 6.094 1.95e–5**
LON 1.784 0.076671

SST 14.644 1.44e–4**

SSS 2.476 0.017101*

Chl.a 0.212 0.667278

DO 8.060 5.12e–5**

DEPTH 13.325 1.39e-6**

注: *P<0.05, **P<0.01
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图 3    春季各解释变量对多钩钩腕乌贼生物量的影响(虚线表示95%置信区间)
Fig. 3    Impacts of explaining variables on abundance of A. multihamata in spring (the dashed line represents the 95% confidence interval)
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3    讨论
 

3.1   栖息分布及其影响因素

多钩钩腕乌贼为深水种, 其主要栖息海域相对

远离陆地 , 主要栖息水深200—700 m, 最深可达

3500 m[2], 是中远洋边界物种
[1]
。经过分析验证发

现, 多钩钩腕乌贼在浙江近海27°N—29°N, 122°E—
123°E范围海域具有较高的生物量, 且主要分布水

深为40—70 m, 为浙江近海头足类分布及其与环境

因子的研究进行了补充。浙江近海北部海域几乎

没有出现多钩钩腕乌贼, 该海域距离长江入海口较

近, 江河水和海水的交汇导致该海域的温度和盐度

变化幅度大且范围更广
[24], 对多钩钩腕乌贼的生存

不利。黑潮暖流是多钩钩腕乌贼的栖息分布特征

的影响因素之一, 多钩钩腕乌贼主要分布在冷暖水

团交汇处靠近暖水侧的海域
[25]
。

海水温度对头足类生物的时空分布具有显著

影响
[26], 如: 影响海州湾短蛸栖息分布特征的最主

要环境因子为海底温度
[27], SST是影响秘鲁外海茎

柔鱼栖息地时空分布的主要环境因子, 且各环境因

子的影响具有月份间的差异
[28]
。多钩钩腕乌贼偏

好水温较高的海域, 属于暖水种
[2]
。不同季节多钩

钩腕乌贼生物量时空分布对SST具有不同的适应

性, 其中春季的最适SST为14—18℃, 秋季最适SST
为18—22℃, 其对温度的耐受能力在不同季节表现

不同, 适温范围较广, 且秋季适宜温度更高。

多钩钩腕乌贼偏好高盐度海域, 春季SSS对多

钩钩腕乌贼生物量和分布作用不显著, 秋季最适

SSS为27‰—35‰。高盐度的海域通常意味着稳定

的水团和高海洋生物适宜度
[29]
。浙江南部外海离

长江口和陆地水系距离较远, 受到陆地淡水水系的

冲积作用较小, 近岸的低盐度海水对多钩钩腕乌贼

影响较小, 是其生物量形成陆地−外海升高的主要

因素。

溶解氧浓度在秋季具有显著作用, 但是对春季

的生物量影响并不显著。这种季节间差异表现的

主要原因可能有(1)春季的多钩钩腕乌贼生物量并

不高, 且分布站位距离较近, 数量较少, DO的差异
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图 4    秋季各解释变量对多钩钩腕乌贼生物量的影响(虚线表示95%置信区间)
Fig. 4    Impacts of explaining variables on abundance of A. multihamata in autumn (the dashed line represents the 95% confidence interval)
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图 5    春季浙江近海多钩钩腕乌贼生物量年际分布

Fig. 5    Annual distribution of biomass for A. multihamata off Zhejiang coast in spring
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图 6    秋季浙江近海多钩钩腕乌贼生物量年际分布

Fig. 6    Annual distribution of biomass for A. multihamata off Zhejiang coast in autumn
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细微, 而GAM模型难以捕捉到较少的数据样本间

存在的差异; (2)秋季的多钩钩腕乌贼需要较多的氧

气支持其生命活动进行洄游
[30]
。陈峰等

[31]
研究认

为, 春夏季剑尖枪乌贼栖息地溶解氧的最适范围为

7—11 mg/L, 溶解氧是影响该物种的重要环境变量,
与本研究得到的多钩钩腕乌贼在秋季DO的最适区

间较为一致。

叶绿素浓度是初级生产力的表征, 对海洋生物

的分布和集聚具有重要作用
[32]
。浮游生物偏好初

级生产力较高的海域, 为头足类生物提供丰富的饵

料生物
[33]
。海洋生物的仔鱼补充量与初级生产力

呈正相关的关系
[34]
。但是, 本研究的叶绿素浓度并

不是影响多钩钩腕乌贼春秋季时空分布的显著变

量, 可能是其分布在浙江南部外海, 栖息的海域叶

绿素浓度较低。同时钩腕乌贼在食物链中处于中

级消费者, 具有承上启下的作用
[35], 并不直接摄入

浮游植物和浮游动物。 

3.2   时空分布特征

浙江近海的头足类生物量通常在春季较高, 而
秋季较低, 但是钩腕乌贼、枪乌贼等小型乌贼却具

有相反的趋势
[5], 多钩钩腕乌贼的平均生物量具有

显著的季节性差异, 与浙江近海的环境因子变化和

其洄游习性相关。多钩钩腕乌贼作为弱游泳性头

足类, 其洄游的规模和范围均弱于大型头足类
[36]
。

季节性洄游是引起浙江近海头足类生物时空分布

变化的主要原因
[37], 钩腕乌贼产卵期间从深水洄游

至浅水区产卵
[38], 其分布水深较浅。秋季多钩钩腕

乌贼可洄游至北部和南部远海, 其种群具有一定的

集群性(图 6), 生物量相较于春季更高, 且具有很强

的资源恢复力
[7]
。多钩钩腕乌贼的时空分布还可能

与头足类生物生活史相关: 头足类生物在不同生长

阶段具有不同的移动方式
[36], 在卵和副幼虫阶段其

分布主要受海流的影响; 大部分头足类生物具有垂

直移动的习性
[39], 白天偏好深水区, 夜晚偏好浅水区。

多钩钩腕乌贼的生物量年际和月份间差异较

大, 其中2023年的平均生物量最高, 而2022年的平

均生物量最低。相关研究认为, 这可能与典型气候

事件的发生有关
[40, 41]

。2023年秋季厄尔尼诺发生

期间(表  4), 黑潮暖流势力增强导致海水盐度升

高、海水温度偏高
[42], 初级生产力水平上升, 因此

多钩钩腕乌贼平均生物量高于其他年份, 栖息地主

要向浙江北部及南部外海扩散。拉尼娜发生时间

为2020年8月至2021年4月和2021年9月至2023年
1月, 持续时间较长, 更易出现寒冬, 对多钩钩腕乌

贼来年的孵化率和生物补充量具有负面影响
[43], 引

起调查产卵场海域的总体生物量下降
[41]
。 

3.3   GAM模型的适用性和局限性

GAM模型可以较好地表现渔业数据与环境因

子等各因素的定量关系
[44], 适用于远洋和近海的头

足类生物的时空分布与环境因子之间关系的研

究。例如, 张弼强等
[45]
利用GAM模型分析时空因

子和环境因子对西北印度洋鸢乌贼时空分布的解

释率为40.4%, 徐晓萱等
[46]
使用海底温度和盐度及

时间因子对浙江近海曼氏无针乌贼时空分布研究

解释率为21.3%。本研究采用2018—2023年连续

6年的春秋季浙江近海底拖网调查数据, 建立了精

度较高的GAM模型, 春季模型解释率为54.0%, 秋
季模型解释率为44.8%。然而, GAM的精度依赖样

本数量
[44], 解释变量的自相关性和所选择的环境因

子均会影响GAM的精度, 因此有必要进行VIF分析

以便排除自相关性高的环境变量。 

4    结论

本研究通过GAM对多钩钩腕乌贼的生物量年

际间和季节性变动与环境因子间的关系进行了分

析, 结果表明: 多钩钩腕乌贼在浙江近海的主要分

布范围为27°N—29°N, 122°E—123°E, 主要分布深

度为40—70 m。春季, 多钩钩腕乌贼生物量及其分

布的主要因子为LON、SST和DEPTH, 最适SST为
14—18℃。秋季, 影响多钩钩腕乌贼生物量及其分

 

表 4    2018—2023年1—12月厄尔尼诺指数

Tab. 4    Oceanic Niño Index (ONI) from January to December of 2018—2023

年份Year 1 2 3 4 5 6 7 8 9 10 11 12
2018 –0.9 –0.9 –0.7 –0.5 –0.2 0 0.1 0.2 0.5 0.8 0.9 0.8

2019 0.7 0.7 0.7 0.7 0.5 0.5 0.3 0.1 0.2 0.3 0.5 0.5

2020 0.5 0.5 0.4 0.2 –0.1 –0.3 –0.4 –0.6 –0.9 –1.2 –1.3 –1.2

2021 –1 –0.9 –0.8 –0.7 –0.5 –0.4 –0.4 –0.5 –0.7 –0.8 –1 –1

2022 –1 –0.9 –1 –1.1 –1 –0.9 –0.8 –0.9 –1 –1 –0.9 –0.8
2023 –0.7 –0.4 –0.1 0.2 0.5 0.8 1.1 1.3 1.6 1.8 1.9 2

注: ONI大于0.5的月份被定义为厄尔尼诺发生期, 小于–0.5的月份被定义为拉尼娜发生期
Note: Months with ONI greater than 0.5 are defined as El Niño occurrence periods, while months with ONI less than –0.5 are defined as

La Niña occurrence periods
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布的显著因子为LAT、SST、SSS、DO和DEPTH,
SST最适区间为18—22℃, SSS最适区间为27‰—
35‰, DO最适区间为7—11 mg/L。本研究主要考

虑的是环境因子对多钩钩腕乌贼的影响, 而忽略了

海浪和海流、渔业调查方法、模型选择因素等方

面的影响, 在后续的研究中需加以考虑。

(作者声明本文符合出版伦理要求)
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RELATIONSHIP BETWEEN HABITAT DISTRIBUTION CHARACTERISTICS
AND ENVIRONMENTAL FACTORS OF ABRALIA MULTIHAMATA IN

ZHEJIANG OFFSHORE

LI Jian-Xiong1, 2, CHEN Feng1, 2, 3, DAI Qian1, 2, 3, JIANG Ri-Jin1, 2, 3, XU Kai-Da1, 2, 3, ZHOU Yong-Dong1, 2, 3,
LIANG Jun1, 2, 3 and ZHU Kai1, 2, 3

(1. Marine and Fisheries Institute, Zhejiang Ocean University, Zhoushan 316021, China; 2. Zhejiang Marine Fisheries Research
Institute, Zhoushan 316021, China; 3. Scientific Observing and Experimental Station of Fishery Resources for Key

Fishing Grounds, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sustainable Utilization of
Technology Research for Fishery Resources of Zhejiang Province, Zhoushan 316021, China)

Abstract: Abralia  multihamata is  an  important  cephalopod  species  in  Zhejiang  offshore  with  a  high  biomass  in  the
continental shelf waters of the East China Sea. It serves as an important bait organism for marine fish. In this study, the
biomass of Abralia multihamata was estimated by using the swept area method based on trawl survey data and marine
environmental  data  collected  in  spring  and  autumn  of  2018  to  2023  in  Zhejiang  offshore.  The  relationship  between
habitat  distribution  characteristics  of Abralia  multihamata and  environmental  factors  in  spring  and  autumn  was
analyzed  using  generalized  additive  model  (GAM).  The  results  showed  that  the  average  biomass  of Abralia multi-
hamata in  the  Zhejiang  offshore  exhibited  notable  seasonal  variation.  It  was  mainly  distributed  within  the  sea  area
27°—29°N, 122°—124°E with a depth of 40—70 m. The factors influencing the cephalopod biomass included longi-
tude,  latitude,  depth,  sea  surface  temperature  (SST),  sea  surface  salinity  (SSS),  and  dissolved  oxygen  concentration
(DO). The optimum SST was 14—18℃ in spring and 18—22℃ in autumn. The effect of SSS and DO on the biomass
of Abralia multihamata were not significant during the spring season. The optimum SSS was 27‰—35‰ and the opti-
mum DO was found in the range of 7—11 mL/L in autumn. Furthermore, the findings of this study provide a scientific
foundation  for  the  conservation  of  cephalopod  resources  in  Zhejiang  offshore,  especially  in  light  of  the  challenges
posed by climate change.

Key words: Generalised additive model; Habitat distribution; Environmental factors; Zhejiang offshore; Abralia multi-
hamata
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