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Fig. 1 Location of research area and distribution of sampling points
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Fig. 3 Comparison of DOM between restored and unrestored areas
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a. Van Krevelen chart in the restored and unstored areas; b. Comparison of different types of organic compounds of unique DOM molecules

in the restored and unrestored areas; c. Percentage of unique DOM molecules in the restored area; d. Percentage of unique DOM molecules

in the unrestored areas



6 KRR Y R

2025, 49(7): 072515

YIRE 5| AR FIDOM 2 120 i A8 Ak
2.3 DOMAFREM

KB E X DOM 73T NOSCHE 7E-2—0RE %
EEHE, RPUHLESELmEESHIY; K&
X NOSCHH 7E0— I ME 555 B o vy, RIARMBHE X
[FIDOM 43 ¥ Al a T2 S E WA 4). IEJH
A HA ML AR X T8 ASBm E HLA 5 3 T 1
MAEVIEMRIE . [, @8 DOMS: + B I 58
FERAT AU BB R X 5 KRB E XNOSCy, 737
H-0.47F1-0.44, 3 — LR FHKAEFEE X FIDOM
TR FHCREE X E TR E. b, BT
DOM 43 F A Fa g A A DOM A F R 1),
BEXHE T ARG X & 53 & A A
DOMZr R, Jo H 2 & (P) i & IDOM 7 +-2K
AI(CHOP. CHONP. CHOPSHICHONPS), &% [X
AR AR E X 1.4—2.290% . MIKskit, Fikd
UKD RE R =i A 7K A4 ke ot 3 B2 A DOM

09 r
s Ix

0.8 Do oRRRER
0.7 t .

0.6 |
0.5t
0.4 |
03}
02 |
0.1 r; D IR EN
0

NOSC

K4 BEX5REEXEFHDOMSFNOSCH 1% K
Fig. 4 Density map of NOSC values of unique DOM molecules
in the restored and unrestored areas

I3 FBIE R, 3R SR H K A DOM ) R 1
3 g

1& 5 X KA R 1) COL K B (0.014 mmol/L) & %
K F ARAEE [X(0.04 mmol/L), AL T A 1] K
ARG = AR T BT, I AT REAE IV R RS
COL MM o AR T ARAB X 8 15 I COL < 5 7T B S
B A KA OB CO,, 5 IR = RN . B
s PR B T SR I, 5 UK B
FR X 3R B A 0K R 40 X 35k A ik 2D 89% i == A< A
Hedis o DAL, WTAKARL A 0 b ook 22 T P iR == <A
Ho A EEEH . 8 R, BEXKTPH
TN &5 0 b AR 2 B X PR 1 47.9%F126.2%, 1X
T PR B R, SO A RN A B [ AR
FH & 22 FhHL, A BOB AR T K4 i 0B e
BEAN, GUKME DRI 2. G AN 05 A e v i
AR IE S M HI RO ROR . SR S 4
TR Rl 25 0 A e A ) g 2 e DT,
ST A TR o R A AR SR DL UTK A A o E )
HEZS RS, I P T DOM M 5 Y8 i 1) T K R 4 3k
Y5O T B AR T K AR DOM 4y T2 (1 5). 15
2 XA DOM%r ¥ 3 E LLCHON. CHOMICHOP
FAURNE, AR BE X FADOM 11l & LACHON
FMCHOZE M, X ] fig 5 F YR M 5 5 IR B DOM T 14
YA . PUKIEYATEDOME & 2 By 2K Y) Ik,
HA R 5 &, VA A B 2 R A
a0, gy e = e AT IR T i
R W, FEIEDOM LR R 4) N E, HIFEDOMIY)
TN LLRER R IR 0 N T eAh, BARAIK
W 9C T AR L BIAE M BEE AR AR b, (B B iR
WA LKA 0 %o 9 AR S IR B 1) AR s fe i AR ) 2

#z1 EEXS5KEEXDOMS FHREM

Tab. 1  Stability of DOM molecules in the restored and unrestored areas

N IKAEZMEE X Restored area
43 FJ M Molecular type

A2 H X Unrestored area KEFBHX/FKEEX

NOSC,, MLB #ZE MLBg#2 NOSC,, MLB #Z MLBgH% MLBg L%
CHO -0.5 901 2638 -0.51 981 2482 1.06
CHON —0.14 248 2129 —0.14 316 2145 0.99
CHOP -1.01 491 220 -0.76 259 96 2.29
CHOS —0.41 195 366 —0.45 170 316 1.15
CHONP —0.63 102 102 -0.58 97 70 1.45
CHONS -0.35 84 167 —0.24 77 165 1.01
CHOPS -1.13 61 31 -1.06 23 20 1.55
CHONPS -0.57 51 28 -0.62 45 20 1.4
MK Total —0.47 2133 5681 —0.44 1968 5314 1.07

7¥: MLB| & 5 AR HIDOM, MLBy A% 4B A% T DOM™”

Note: MLBy refers to DOM that is labile, while MLBg, refers to DOM that is recalcitrant”™”
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THE IMPACT OF SUBMERGED AQUATIC MACROPHYTES ON DISSOLVED
ORGANIC MATTER IN LAKES: A CASE STUDY OF DONGHU
LAKE IN WUHAN

FU Hong-Ming"’, ZHENG Bing-Qing”’, SUN Cai-Yun™’, WU Zhen-Bin’, LI Liang' and WANG Pei’

(1. School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; 2. Institute of Hydro-
biology, Chinese Academy of Sciences, Wuhan 430072, China; 3. College of Resource & Environmental Engineering, Wuhan
University of Technology, Wuhan 430070, China)

Abstract: The growth and senescence processes of submerged aquatic macrophytes can affect the dynamic balance of
dissolved organic matter (DOM) in lakes, thereby reshaping the carbon cycling patterns of lakes. To explore the impact
of submerged aquatic macrophytes-based ecological restoration on lake water carbon cycling, this study focused on the
submerged aquatic macrophytes restoration area and the unrestored area in Donghu Lake, Wuhan. Fourier Transform
Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) was employed to compare the chemical diversity of DOM
in the restored and unrestored areas, revealing the effects of submerged aquatic macrophytes on DOM stability in water.
The results showed that submerged aquatic macrophyte plant restoration significantly improved the physicochemical
properties of the water while altering the chemical diversity of DOM molecules. The restored and unrestored areas
contained 7814 and 7282 types of DOM molecules, respectively. Among them, 1768 types were unique to the restored
area, primarily consisting of CHO, CHON, and CHOP types, while 1236 types were unique to the unrestored area,
mainly consisting of CHO and CHON types. Further analysis revealed that the restored area had 1.4 to 2.29 times more
relatively recalcitrant DOM molecules containing phosphorus (CHOP, CHONP, CHOPS, and CHONPS) than the unre-
stored area, Additionally, the content of highly reduced DOM was higher, indicating that DOM in the restored area was
more thermodynamically stable than that in the unrestored area. In summary, submerged aquatic macrophytes not only
changed the composition of DOM molecules in the water but also increased the abundance of recalcitrant DOM
molecules. This study enhances our understanding of the impact of lake carbon transformation processes on the carbon
cycle and provides a scientific basis for accurately assessing the carbon sink potential of lakes in the future.

Key words: Water Ecological Restoration; Submerged Plants; Dissolved Organic Matter; Fourier Transform Ion
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