

短时间和长时间盐度对木榄幼苗生长及叶片膜脂过氧化作用的研究

张宜辉 王文卿 林鹏

(厦门大学生命科学学院, 厦门 361005)

摘要: 对短时间和长时间盐胁迫下红树植物木榄(*Bruguiera gymnorhiza* (L.) Lamk.)幼苗的生长、叶片膜脂过氧化作用、叶绿素含量、电解质渗漏率、叶片肉质化程度等与盐胁迫强度之间的关系进行了对比研究。不同的盐胁迫时间下, 随盐胁迫强度的提高, 木榄幼苗的生长、叶片超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量、肉质化程度S及叶绿素含量等变化趋势相似, 表明不同盐胁迫时间下红树植物木榄的耐盐机制并没有发生根本改变。但随着盐胁迫时间的延长, 木榄幼苗发生了一系列适应盐胁迫的变化, 如木榄幼苗的最适生长盐度由10g/L提高到20g/L, 叶片电解质渗漏率下降, 表明在本研究的实验条件下, 长时间盐胁迫下木榄幼苗表现出对盐胁迫更大的适应性。膜脂过氧化不是盐胁迫下木榄叶片膜损伤的主要原因。

关键词: 红树林; 木榄; 盐胁迫; 生长; 膜脂过氧化

中图分类号: Q945.78 文献标识码: A 文章编号: 1000-3207(2004)02-0186-05

有关盐胁迫下植物细胞膜脂过氧化作用的研究已有不少^[1-3], 但尚不能确定膜脂过氧化是否是盐胁迫下膜伤害的主要原因。除了物种的遗传差异, 盐胁迫作用方式的不同也是重要原因之一。蒋明义等^[4]在研究渗透胁迫对水稻的伤害时, 就注意到不同渗透胁迫强度及作用时间对植物的不同效应。盐生植物受到某种程度的盐胁迫时, 能通过一系列生理生化反应来适应这种胁迫, 但完成这种适应也需要一定的时间, 所需的时间与物种的遗传特性及盐胁迫作用方式有关。对长时间和短时间盐胁迫下基因表达、甘油合成途径及多胺代谢等的研究表明, 不同盐胁迫时间下细胞有不同的抗盐机制^[5-7]。Ball和Farquhar对泌盐红树植物白骨壤(*Avicennia marina*)的研究也发现不同时间下随盐胁迫强度的提高其叶片的气体代谢有不同的变化规律。有关不同盐胁迫时间下不同盐胁迫强度对盐生植物细胞膜脂过氧化作用的研究很少^[8]。基于上述原因, 作者对长时间(40d)和短时间(1d)盐胁迫下红树植物木榄(*Bruguiera gymnorhiza* (L.) Lamk.)叶片细胞膜脂过氧化作用与盐胁迫强度之间的关系进行了对比研究。

1 材料与方法

1.1 木榄幼苗的培养 1997年7月于福建九龙江口红树林自然保护区采集成熟胚轴, 选择大小一致者(平均长度16.43±1.38cm, 平均鲜重17.06±0.99g)沙培。每盆用沙5kg, 每盆种胚轴10根。盆口径35cm, 高15cm, 用不同盐度的海水处理, 海水盐度分别为: 0、10、20、30、40和50g/L, 每盆培养液2500mL, 3个重复。海水取自厦门港, 使用前经8层纱布及活性炭过滤, 盐度测定后用自来水冲稀或加盐调配至上述浓度。自然光下培养, 培养期间相对湿度80%左右, 白天温度32℃, 夜间温度25℃, 每天加自来水补充耗去的水量。每隔半个月更换一次培养液。从胚轴栽种到第一对真叶张开约需一个月。当所有植株第一对真叶完全张开后开始计时, 分别于第1d、第40d采集第一对真叶测定超氧化物酶(SOD)活性及丙二醛(MDA)含量、叶片肉质化程度、电解质渗漏率、叶绿素含量等。同时测定根、茎和叶片的干重。为方便起见, 称第一次取样为短时间盐胁迫, 第二次取样为长时间盐胁迫。

收稿日期: 2002-07-21; 修订日期: 2003-10-20

基金项目: 国家自然科学基金资助(编号: 39670135)

作者简介: 张宜辉(1975—), 男, 福建省屏南县人, 博士; 研究方向: 植物生态学

通讯作者: 王文卿, E-mail: wenqing2001@hotmail.com

1.2 测定方法 称重法测定叶片饱和含水量, 剪纸衡重法测定叶片面积, 并计算叶片的肉质化程度—多汁度 S ^[9]: 多汁度 $S = \text{饱和水分含量(g)} / \text{表面积} (\text{dm}^2)$; 电导法测定质膜透性(电解质渗漏率), 硫代巴比妥酸法测定叶片丙二醛(MDA)含量, 超氧化物歧化酶(SOD)活性采用SOD抑制氮蓝四唑(NBT)在荧光下的还原作用法测定^[10]。测定SOD活性时提取酶的磷酸缓冲液中加适量的聚乙烯吡咯烷酮(PVP)。叶片叶绿素经水: 酒精: 丙酮比为1:4.5:4.5的混合提取液提取后用分光光度法测定^[11]。干重测定采用烘干法(105℃, 24h)。

2 结果

2.1 不同盐胁迫时间和强度对个体生长的影响

基质盐度对木榄幼苗的生长有显著影响。低盐下生长随基质盐度的提高而加快, 而当基质盐度超过某域值时, 生长又随基质盐度的提高而下降。也就是说, 木榄的生长存在最适盐度。但是, 不同盐胁迫时间下木榄幼苗的最适生长盐度不同, 短时间盐胁迫时生长最适盐度为10g/L, 而长时间盐胁迫时生长最适盐度为20g/L。此外, 随盐胁迫时间的延长, 最适盐浓度对木榄幼苗的生长效应增强。短时间盐胁迫下基质盐度10g/L时的总生长量仅比对照高38.5%, 比基质盐度50g/L时高200%; 而长时间盐胁迫下基质盐度20g/L时的总生长量比对照高72.2%, 比基质盐度50g/L时高287.5% (图1)。

2.2 不同胁迫时间和强度对叶片SOD活性和MDA含量的影响

短时间盐胁迫下, 低盐胁迫时叶片SOD活性随

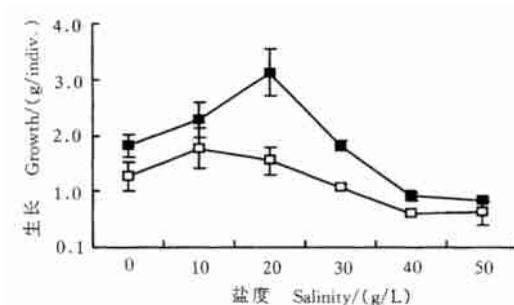


图1 基质盐度对木榄幼苗生长的影响

Fig. 1 Effects of substrate salinity on the growth of *B. gymnorhiza*

The error bar were the SE of three replicates

—□—Short term treatment —■—Long term treatment

基质盐度的提高而降低, 而后稳定在1000U/g FW左右, 而当盐度超过30g/L时, SOD活性迅速升高; 长时间盐胁迫下, 当基质盐度低于40g/L时, 叶片SOD活性随基质盐度的提高略微降低, 而当盐度超过40g/L时, SOD活性迅速升高, 盐度50g/L时叶片SOD活性比对照高1倍左右。此外, 长时间盐胁迫下叶片SOD活性均显著低于短时间盐胁迫者(图2a)。

从图2b可看出, 随基质盐度的提高, 不同盐胁迫时间下木榄叶片MDA含量的变化趋势相近, 均为低盐时随基质盐度的提高而下降, 高盐时随基质盐度的提高而升高。但是, 短时间盐胁迫时叶片MDA含量最低值出现在基质盐度10g/L处, 而长时间盐胁迫时叶片MDA含量最低值出现在基质盐度30—40g/L处。

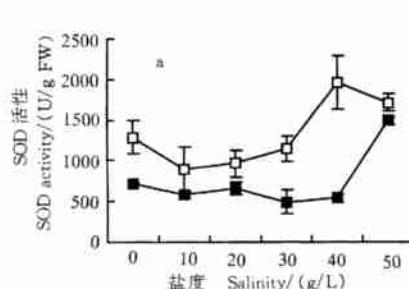



图2 木榄幼苗叶片SOD活性与MDA含量与盐胁迫强度关系

Fig. 2 Effects of substrate salinity on the SOD activity and MDA content of the leaves of *B. gymnorhiza* seedlings

The error bars were the SE of three replicates

—□—Short term treatment —■—Long term treatment

2.3 不同盐胁迫时间和强度对木榄叶片若干生理生化指标的影响

无论是短时间盐胁迫还是长时间盐胁迫, 叶片电解质渗漏率均随基质盐度的提高而提高, 它们与盐胁迫强度之间均呈极显著的正相关关系, 相关系数分别为: 0.9843($P < 0.01$), 0.9606($P < 0.01$)。但是, 除低盐情况外, 长时间盐胁迫下叶片电解质渗漏率显著低于短时间盐胁迫(图 3a)。

在两种盐胁迫时间下, 叶片肉质化程度 S 值随基质盐度的提高而提高, 而当基质盐度超过某域值后, S 值又开始下降。短时间盐胁迫下叶片 S 值在基质盐度为 10g/L 时最高, 而长时间盐胁迫下叶片 S 峰值出现在基质盐度 20g/L 处最大, 在盐度 20—

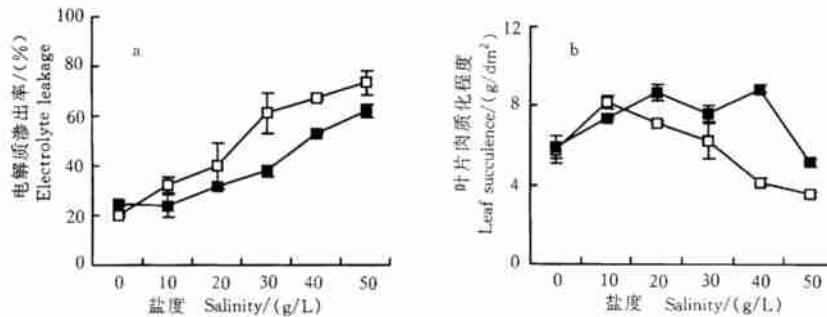
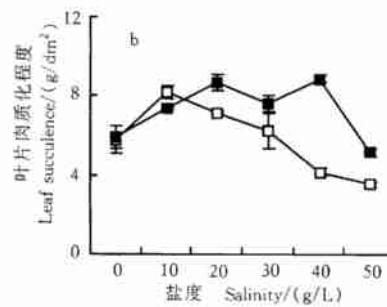


图 3 盐胁迫强度对木榄叶片电解质渗漏率和叶片肉质化程度的影响

Fig. 3 Effects of substrate salinity on the electrolyte leakage and succulence of the leaves of *B. gymnorhiza* seedlings
The error bars were the SE of three replicates
—□—Short term treatment —■—Long term treatment

表 1 不同盐胁迫时间下基质盐度对木榄幼苗叶片叶绿素含量的影响

Tab. 1 Effects of substrate salinity on the chlorophyll a and b content of the leaves of *B. gymnorhiza* seedlings under short and long term salt stress


盐度 Salinity (g/L)	Chl a (mg/g FW)		Chl b (mg/g FW)		a+b	
	Short	Long	Short	Long	Short	Long
0	0.73±0.01	0.58±0.05	0.29±0.02	0.25±0.04	1.02±0.02	0.84±0.09
10	0.46±0.01	0.42±0.01	0.18±0.02	0.17±0.01	0.64±0.03	0.59±0.01
20	0.52±0.05	0.36±0.01	0.21±0.02	0.15±0.01	0.74±0.07	0.51±0.02
30	0.52±0.03	0.51±0.03	0.19±0.01	0.22±0.02	0.71±0.04	0.73±0.05
40	0.55±0.01	0.47±0.05	0.21±0.00	0.21±0.05	0.76±0.00	0.67±0.10
50	0.76±0.06	0.93±0.04	0.26±0.01	0.41±0.01	1.01±0.07	1.34±0.05

3 讨论

盐胁迫主要包括渗透胁迫、离子毒害和离子不平衡或营养缺乏, 使植物生长受抑制, 光合下降, 能耗增加, 加速衰老^[12]。盐生植物在其生长发育中需

40g/L 范围内 S 值变化不大, 而当盐度超过 40g/L 后 S 值迅速降低。低盐胁迫下, 不同盐胁迫时间下叶片肉质化程度 S 差别不大, 而当基质盐度高于 20g/L 时, 长时间盐胁迫下叶片肉质化程度显著高于短时间盐胁迫(图 3b)。根据 Ting 和 Klage^[9]的划分标准, 木榄叶片的肉质化程度 S 介于一般植物的 0.1—1.2g/dm² 与典型肉质植物的 5.1—14.9g/dm² 之间。

此外, 随盐胁迫强度的提高, 两种胁迫时间下叶片叶绿素含量的变化趋势相同, 低盐条件下随盐度的提高而下降, 当盐度分别超过 10g/L 或 20g/L 后又逐步上升(表 1)。除个别情况外, 不同盐胁迫时间下叶片叶绿素含量差别不大。

要一定的盐分, 但外界环境中的盐分高于或低于其生长最适浓度, 盐生植物的生长和发育都会受到不同程度的影响。盐生植物在个体发育过程中对基质盐分的适应能力在生活中具重要意义, 其抗盐性与盐分作用时间有关^[11]。

本研究的对象红树植物木榄, 是一类真盐生木本植物。在短时间和长时间盐胁迫下其幼苗的最适生长盐度分别为 10g/L 和 20g/L。在各自的最适生长盐度下, 木榄幼苗表现为生长量最大, 叶片膜脂过氧化程度小(以 MDA 含量表示)、肉质化程度最大。

在不同的盐胁迫时间下, 随盐胁迫强度的提高, 木榄幼苗的生长、叶片 SOD 活性、MDA 含量、肉质化程度 S 及叶绿素含量等变化趋势相似。表明在本研究的盐胁迫时间范围内, 短时间和长时间盐胁迫下木榄幼苗耐盐机制并没有发生本质的变化。但是, 随盐胁迫时间的延长, 木榄幼苗发生了一系列适应盐胁迫的变化, 其最适生长盐度由 10g/L 提高到 20g/L, 叶片电解质渗漏率显著下降, 叶绿素含量与短时间盐胁迫者差别不大, 由此表明在本研究的实验条件下, 长时间盐胁迫下木榄幼苗的叶片并没有进入衰老状态, 而是表现出对盐胁迫更大的适应性。

Saxena 等^[7]认为长时间盐胁迫下盐生植物的耐盐机制不同于短时间盐胁迫者。虽然对木榄的实验结果与 Saxena 等的推测不符, 但是, 也不能否定该推测。因为植物对盐胁迫的反应因物种而异, 即使同一种内, 也存在着明显的差异。本实验设定的长时间(40d)对木榄来说还不够长。由此表明, 植物的抗盐性的形成不仅与系统发育有关, 还与个体发育有关。

原生质膜的透性对逆境的反应是比较敏感的, 越来越多的研究证实了生物膜在植物逆境胁迫中的重要性^[13]。质膜受到盐胁迫影响后, 将发生一系列的胁变, 其透性将增大, 从而导致溶质的渗漏, 并进一步影响细胞的代谢^[1-3]。实验结果也表明, 无论是短时间还是长时间盐胁迫下, 木榄幼苗叶片电解质渗漏率均随盐胁迫强度的提高而增大。

目前, 对盐胁迫下原生质膜透性的变化机理尚不清楚。赵可夫等^[1]对碱蓬、刘宛等^[3]对小麦, 蒋明义等^[4]对水稻的实验结果都得出各自的幼苗在盐胁迫下叶片细胞膜渗漏率增加与质膜过氧化产物—丙二醛(MDA)含量的增加呈正相关, 认为膜脂过氧化是引起膜伤害的主要原因。但也有研究得出不同的结论^[14], 吕庆等^[15]认为膜损伤是膜脂过氧化和脱脂化共同作用的结果。但何者占主导地位, 可能与物种、器官以及生育期的不同有关^[16]。本研究中, 两种盐胁迫时间下, 木榄叶片的膜脂过氧化程度(以 MDA 含量表示)与膜损伤程度(以叶片电解质渗漏率表示)之间并不存在简单的线性关系。由此表明, 膜脂过氧化作用不是盐胁迫下木榄幼苗叶片膜损伤

的主要原因。

参考文献:

- [1] Zhao K F, Zou Q, Li D Q, et al. The effect of salt and water stress on membrane lipid peroxidation in leaf cells of halophyte and non halophyte [J]. *Acta Botanica Sinica*, 1993, 35(7): 519—525[赵可夫, 邹琦, 李德全, 等. 盐分和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应. 植物学报, 1993, 35(7): 519—525]
- [2] Gao H Y, Li W J, He Y G, et al. Effect of Na_2SO_4 stress on membrane lipid peroxidation and scavenging system of activated oxygen in four grasses with different salt resistance [J]. *Acta Phytocologica Sinica*, 1995, 19(2): 192—196[高辉远, 李卫军, 李永革, 等. Na_2SO_4 胁迫对四种抗盐性不同牧草膜脂过氧化和活性氧清除系统的影响. 植物生态学报, 1995, 19(2): 192—196]
- [3] Liu W, Hu W Y, Xie F D, et al. Effects of NaCl stress and exogenous free radical on oxygen free radical and membrane lipid peroxidation of isolated wheat leaves [J]. *Plant Physiology Communications*, 1995, 31(1): 26—29[刘宛, 胡文玉, 谢浦绵, 等. NaCl 胁迫及外源自由基对离体小麦叶片 O_2^- 和膜脂过氧化的影响. 植物生理学通讯, 1995, 31(1): 26—29]
- [4] Jiang M Y, Yang W Y, Xu J, et al. Active oxygen damage of chlorophyll degradation in rice seedlings under osmotic stress [J]. *Acta Botanica Sinica*, 1994, 6(4): 289—295[蒋明义, 杨文英, 徐江, 等. 渗透胁迫下水稻幼苗叶片中叶绿素降解的活性氧损伤作用. 植物学报, 1994, 36(4): 289—295]
- [5] Das S, Bose A, Ghosh B. Effect of salt stress on polyamine metabolism in *Brassica campestris* [J]. *Phytochemistry*, 1995, 39(2): 283—285
- [6] Redkar R J, Lacy R D, Singh N K. Biosynthetic pathways of glycerol accumulation under salt stress in *Aspergillus nidulans* [J]. *Experimental Mycology*, 1995, 19(4): 241—246
- [7] Saxena D, Amin M, Khanna S. Modulation of protein profiles in *Rhizobium* sp. under salt stress [J]. *Canadian Journal of Microbiology*, 1996, 42: 617—620
- [8] Wang W Q, Lin P. Study on the membrane lipid peroxidation of the leaves of *Kandelia candel* seedlings to long term and short term salinity [J]. *Acta Oceanologica Sinica*, 2000, 22(3): 49—54[王文卿, 林鹏. 不同盐胁迫时间下秋茄幼苗叶片膜脂过氧化作用的研究. 海洋学报, 2000, 22(3): 49—54]
- [9] Kluge M, Ting I P. Crassulacean acid metabolism: analysis of an ecological adaptation [M]. New York: Springer-Verlag, 1978
- [10] Liu Z Q, Zhang S C. Plant stress resistant physiology [M]. Beijing: China Agriculture Press, 1994, 243—372[刘祖祺, 张石诚. 植物抗性生理学. 北京: 中国农业出版社, 1994, 243—372]
- [11] Zhang Z L. Guidance to plant physiological experiments(Second edition) [M]. Beijing: Higher Education Press, 1990, 1—3, 88—91[张志良. 植物生理实验指导(第二版). 北京: 高等教育出版社, 1990, 1—3, 88—91]
- [12] Yu S W, Tang Z C. Plant physiology and molecular biology(Second edition) [M]. Beijing: Science Press, 1999, 752—767[余叔文, 汤章成. 植物生理与植物分子生物学(第二版). 北京: 科学出版社, 1999, 752—767]

[13] Chen S Y. Injury of membrane lipid peroxidation to plant cell[J]. *Plant Physiology Communications*, 1991, 27 (2): 84—90[陈少裕. 膜脂过氧化对植物细胞的伤害. 植物生理学通讯, 1991, 27 (2): 84—90]

[14] Wang B X, Sun L, Huang J C. The relationships between some free radicals and membrane damage and membrane lipid peroxidation induced by osmotic stress [J]. *Science in China (Series B)*, 1992, 4: 364—468[王邦锡, 孙莉, 黄久常. 渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系. 中国科学(B辑), 1992, 4: 364—468]

[15] Lv Q, Zhen R L. Membrane lipid peroxidation and degrease in wheat induced by drought and activated oxygen [J]. *Science in China (Series C)*, 1996, 26 (1): 26—30[吕庆, 郑荣梁. 干旱及活性氧引起小麦膜脂过氧化与脱脂化. 中国科学(C辑), 1996, 26 (1): 26—30]

[16] Wang J H, Liu H X, Xu T. The role of superoxide dismutase (SOD) in stress physiology and senescence physiology of plant[J]. *Plant Physiology Communications*, 1989, 25 (1): 1—7[王建华, 刘鸿先, 徐同. 超氧化物歧化酶(SOD)在植物逆境和衰老生理中的应用. 植物生理学通讯, 1989, 25 (1): 1—7]

GROWTH AND LEAVES MEMBRANE LIPID PEROXIDATION OF *BRUGUERA GYMNORHIZA* (L.) LAMK. SEEDLINGS UNDER LONG AND SHORT TERM SALINITY

ZHANG Yihui WANG WenQing and LIN Peng

(School of Life Sciences, Xiamen University, Xiamen 361005)

Abstract: The aim of the present study was to investigate the effects of severity and duration of the salinity on the growth and leaves membrane lipid peroxidation, antioxidative systems, electrolyte leakage, succulence and chlorophyll content of mangrove *Bruguiera gymnorhiza* (L.) Lamk. seedlings. Mature *B. gymnorhiza* hypocotyls with similar lengths and fresh weights were cultured hydroponically in sand beds at salinities of 0, 10, 20, 30, 40, 50g/ L under natural photoperiods and mean day/ night temperatures of 32/ 25 °C. Tap water was added daily to keep the salinity constant. The salt salutions were changed once 15 days. At 1 and 40 days after the first pair of leaves of all seedlings unfolded, the first pair of leaves for each treatment were collected randomly at different time. The superoxide dismutase (SOD) activity, malondialdehyde MDA content, succulence, electrolyte leakage and chlorophyll content of each leaf were measured.

The changes in growth, leaf SOD activity, MDA content, electrolyte leakage, succulence and chlorophyll content under short term(1day) and long term(40days) salinity were as follows: Moderate salt stress can stimulate the growth of seedlings, and the optimum salinity for growth was 10g/ L and 20g/ L, respectively. When the substrate salinity was higher than the optimum salinity, growth of seedlings declined. On the contrary, SOD activity and MDA content decreased under a moderate salt stress(10—20g/ L). When the substrate salinity was higher than 30—40g/ L, SOD activity and MDA content increased significantly. With the increase of salinity, electrolyte leakage increased constantly, but chlorophyll content did not change significantly. These results indicated that changes in growth, leaf SOD activity, MDA content, succulence, electrolyte leakage and chlorophyll content under short term salinity were similar to those under long term salinity, thus the *B. gymnorhiza* seedlings had similar salt tolerant mechanism under long and short term salinity in our study. On the other hand, with the prolongation of salt stress, certain changes occurred in *B. gymnorhiza* seedlings to adapt themselves better to salt stress. Under short term salinity, the optimum salinity for the growth of *B. gymnorhiza* seedlings was 10g/ L, while it was 20g/ L under long term salinity. The leaves under long term salinity had lower electrolyte leakage. With the increase of salinity, no direct linear correlation between MDA contents and electrolyte leakage under short term salt stress, nor did under long term salt stress. These result indicated that membrane lipid peroxidation was not the main reason for the destroy of *B. gymnorhiza* leaves under salt stress.

Key words: Mangroves; *Bruguiera gymnorhiza* (L.) Lamk.; Salt stress; Growth; Membrane lipid peroxidation