

氧化铁鞘细菌铁氧化酶最适产酶条件及其酶学特性的研究

林跃鑫 余晨兴 许旭萍 谢华玲 李惠珍

(福建师范大学生物工程学院, 福州 350007)

摘要: 对氧化铁鞘细菌 FC9901 菌株的铁氧化酶最适产酶条件及酶学特性进行了研究。菌株最适产酶培养基为(g/L): 柠檬酸铁胺 10g, NaNO₃ 1.2g, MgSO₄·7H₂O 0.5g, K₂HPO₄·7H₂O 0.5g, CaCl₂ 0.015g, ZnSO₄·7H₂O 0.0005 g。最适产酶条件为: 温度 30℃, 起始 pH 7.0, 接种量 2%, 150mL 三角瓶装 50mL, 150r/min 振荡培养 72h。铁氧化酶最适 pH 为 7.5, 最适温度为 30℃。金属离子 Ca²⁺、Mg²⁺、Zn²⁺ 对酶有激活和稳定作用; Cu²⁺、Hg²⁺、Al³⁺ 则抑制酶的活性; Fe²⁺、K⁺、Na⁺ 对酶活性影响不明显。

关键词: 氧化铁鞘细菌; 铁氧化酶; 产酶条件; 酶学特性

中图分类号: Q936 文献标识码: A 文章编号: 1000-3207(2004)04-0385-06

氧化铁锰鞘细菌是一类具有氧化铁锰能力的细菌, 它能去除水质中的高铁高锰, 从而达到水质净化的目的^[1-3]。利用氧化铁锰鞘细菌净化水质简便、经济、有效, 而且不需要投加化学药物以致于造成二次污染。此外, 氧化铁锰鞘细菌还可用于生产生物可降解材料 PHB^[4]、富集重金属和环境生物监测等。所以该类细菌不仅在环境保护特别是污水处理和城市饮用水净化中起着重要的作用, 而且可形成含有微量元素的铁锰沉积物, 对于回收贵重金属和有毒金属也有重要的意义^[5-7]。氧化铁锰鞘细菌由于分离纯化比较困难, 致使其研究进展受到一定的限制。作者曾报道了对球衣菌属(*Sphaerotilus*) FC977-1 和纤发菌属(*Leptothrix*) FC977-2 两个菌株的生境条件和分离鉴定的研究^[8-10], 本文报道另一株氧化铁鞘细菌 *Sphaerotilus natans* FC9901 铁氧化酶的最适产酶条件和酶学特性。

铁氧化酶是氧化铁锰鞘细菌类在污水处理中最重要的酶, 国外一些学者对铁氧化酶的分离纯化曾进行了一些尝试^[11, 12], 但由于该氧化酶含量很低, 而且很容易失活, 对其进一步分离纯化难度甚大。有关鞘细菌产铁氧化酶的产酶条件和酶学特性的研究, 国内外尚未见报道。

1 材料与方法

1.1 菌株来源 *Sphaerotilus natans* FC9901 分离自

厦门污水处理厂曝气池的活性污泥混合液。

1.2 基础产酶培养基(g/L) (NH₄)₂SO₄ 0.5, NaNO₃ 0.5, K₂HPO₄ 0.5, MgSO₄·7H₂O 0.5, CaCl₂·6H₂O 0.1, 柠檬酸铁铵 10.0, pH 7.0。

1.3 铁氧化酶活力的测定 改良 TMPD 法^[13], 吸取粗酶液 5mL, 加入 FeSO₄ 至 200mg/L, 30℃ 静置反应 30min, 然后按邻啡 咪法^[14] 进行测定。改进之处在于, 测定吸光度前离心去除沉淀物。

相对酶活(%) = (1/氧化率最高值) × 每项氧化率(%)

氧化率(%) = (1 - OD_{平均值} / OD_{空白组}) × 100%

OD_{平均值} 为: 三个平行测定值的平均值; OD_{空白组} 为: 未接菌组测定值

1.4 酶液的制备 将发酵液于 4℃ 下, 4,000r/min 离心 10min, 去除菌体及不溶物, 上清液以硫酸铵沉淀得粗酶, 溶于适量 pH 7.0 的 HEPES 缓冲液中, 装入透析袋内置 4℃ 冰箱中透析至不含有 NH₄⁺ 和 SO₄²⁻, 得初步纯化的酶液, 用于酶学特性分析。

2 结果

2.1 最适产酶条件

2.1.1 最适碳源 在基础产酶培养基中, 分别以含碳量相同的不同碳源代替柠檬酸铁铵, 测定发酵液

收稿日期: 2003-04-07; 修订日期: 2003-05-06

基金项目: 福建省自然科学基金项目(MC79) 资助

作者简介: 林跃鑫(1995—), 男, 福建省连城县人; 副教授, 主要从事微生物生化的研究, E-mail: yxlin@pub5.fz.fj.cn, 余晨兴在本校化学与材料科学学院工作

中的相对酶活，并以此来判定产酶情况，结果见表 1。试验结果表明，柠檬酸铁铵是该菌的最适碳源，甘油及葡萄糖次之。当碳源为可溶性淀粉、玉米粉时，产酶量为 0，说明该菌株不具有利用淀粉类物质的能力。

表 1 各种碳源对产酶的影响

Tab. 1 Effect of carbon sources on enzymatic activity

碳 源	添加量	相对酶活
Carbon source	Content (%)	Relative enzymatic activity (%)
葡萄糖 Glucose	0.81	89.28
蔗糖 Sugar	0.70	83.92
果糖 Fructose	0.81	65.17
柠檬酸钠 Sodium citrate	0.86	30.35
乳糖 Lactose	0.70	24.13
甘油 Glycerol	0.75	91.53
可溶性淀粉 Soluble starch	0.60	0
玉米粉 Corn powder	0.79	0
柠檬酸铁胺 Ferric ammonium citrate	1.0	100

2.1.2 最适碳源添加量对产酶的影响 以柠檬酸铁铵为最适碳源，基础产酶培养基中其他成分及条件恒定，测定不同碳源添加量对菌株产酶的影响(图 1)，结果表明，当柠檬酸铁铵添加量为 1.0% 时，产酶最高；当添加量低于 1.0% 时，随着碳源浓度的增加，产酶量也逐渐增高；当添加量高于 1.0% 时，产酶有所下降，至 1.4%—1.6% 时产酶量有较大幅度下降。

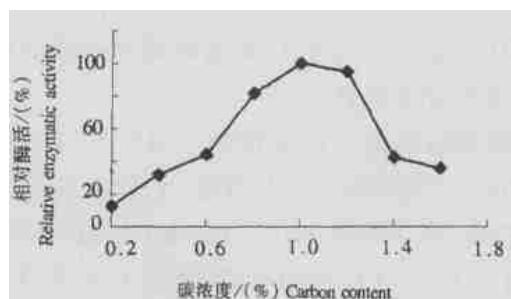


图 1 最适碳源添加量对酶活的影响

Fig. 1 Effect of different amount of carbon source on relative enzymatic activity

2.1.3 最适氮源 以 1.0% 的柠檬酸铁铵为碳源，根据基础产酶培养基中的含氮量折算各种氮源添加量，其他成分及条件与基础产酶培养基相同，结果见表 2。结果表明，当氮源为 NaNO_3 时，产酶量最高， $(\text{NH}_4)_2\text{SO}_4$ 和蛋白胨次之， KNO_3 产酶量最低。故以 NaNO_3 为最适氮源。

表 2 各种氮源对产酶的影响

Tab. 2 Effect of nitrogen sources on enzymatic activity

氮 源	含 量	相对酶活
Nitrogen source	Content (%)	Relative enzymatic activity (%)
NH_4NO_3	0.053	77.82
NaNO_3	0.115	100
KNO_3	0.133	28.47
$(\text{NH}_4)_2\text{SO}_4$	0.088	96.66
Urea	0.041	91.5
Peptone	0.16	95.84
Yeast extract	0.24	83.56
Essential nitrogen source	0.05	90.11

2.1.4 最适氮源添加量对产酶的影响 在基础产酶培养基中加入不同量的 NaNO_3 代替 $(\text{NH}_4)_2\text{SO}_4$ 和 NaNO_3 ，结果如图 2。试验结果表明，氮源添加量对产酶的影响不明显。当氮源添加量为 0.12% 时，可达到最高的产酶水平。当氮源添加量小于 0.12% 时，随着氮源添加量的逐渐增加，产酶有所上升；但当添加量超过 0.12% 时，产酶则有所下降。

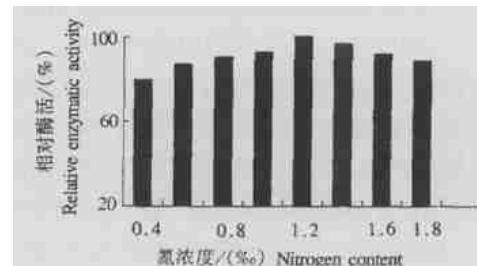


图 2 不同最适氮源浓度对酶活的影响

Fig. 2 Effect of amount of nitrogen source (NaNO_3) on enzymatic activity

2.1.5 不同起始 pH 对菌株产酶的影响 采用最适产酶培养基，用稀 HCl 或 NaOH 调至不同起始 pH，测定起始 pH 对菌株产酶的影响(图 3)。结果表明，菌株产酶的适宜 pH 为 6.5—7.5 之间，其中最适起始 pH 为 7.0。当培养基起始 pH 低于 6.5 或高于 7.5 时，菌株产酶受到明显的影响。

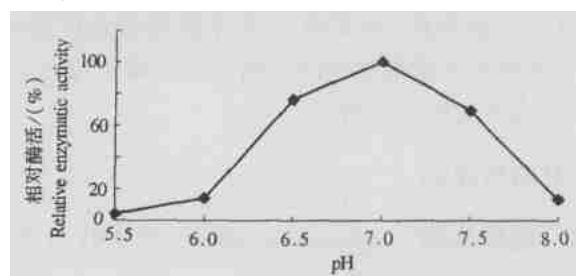


图 3 不同起始 pH 对产酶的影响

Fig. 3 Effect of initial pH value on enzymatic activity

2.1.6 不同培养温度对产酶的影响 超始 pH 为 7.0 的产酶培养基接种后, 分别置于不同的温度下振荡培养(图 4), 结果表明, 不同培养温度对产酶有较大的影响, 产酶最适的温度为 30℃, 低于 30℃或高于 30℃酶活力均较低。

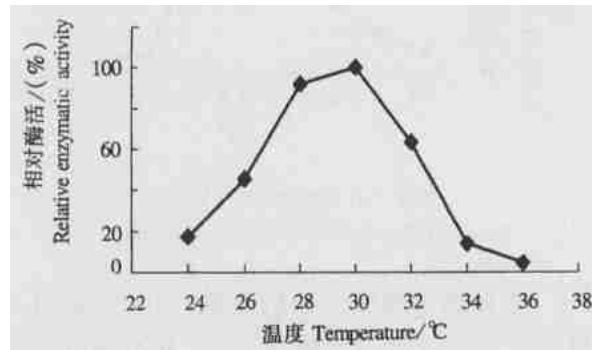


图 4 不同培养温度对产酶的影响

Fig. 4 Effect of culture temperature on enzymatic activity

2.1.7 不同培养基装量对菌株产酶的影响 在 150mL 三角瓶中, 分别装入不同体积的起始 pH 为 7.0 的最适培养基, 接种后于 30℃下 150r/min 振荡培养 72h, 然后取样测定酶活力(图 5)。结果表明, 在一定装量范围内产酶不受影响, 但过高或过低都不适于产酶, 表明通气量与产酶不呈线性关系。

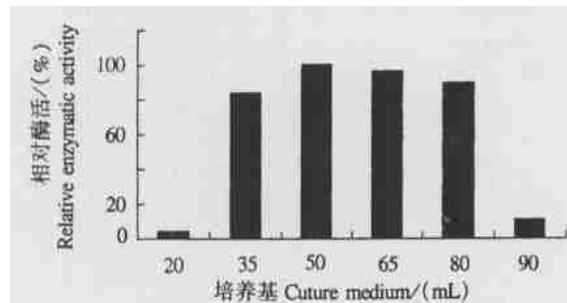


图 5 不同培养基装量对产酶的影响

Fig. 5 Effect of load amount of culture medium on enzymatic activity

2.1.8 不同接种量对产酶的影响 制备 10^{6-7} 个/mL 菌悬液, 分别以 1%, 2%, 3%, 4%, 5%, 6% 接入培养基中, 于 30℃下 150r/min 振荡培养 72h 后测定酶活性(图 6), 结果表明, 当接种量为 2% 时, 产酶可

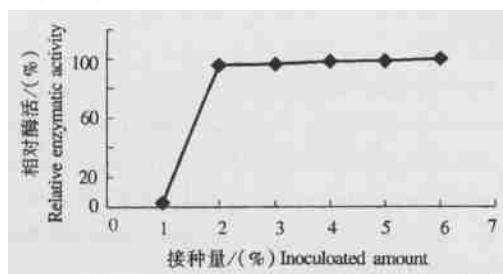


图 6 不同接种量对产酶的影响

Fig. 6 Effect of different inoculated amount on enzymatic activity

以达到较高水平。随着接种量的增大, 产酶虽有所升高, 但升幅并不大。而当接种量小于 2% 时则菌体生长过慢, 产酶很低。

2.1.9 不同培养时间对产酶的影响 以 2% 接种量接入最适产酶培养基中, 于 30℃下 150r/min 振荡培养, 每隔 24h 取样测定酶活力(图 7)。结果表明, 在 72h 时酶活力单位最高, 延长培养时间, 酶活力有所下降。

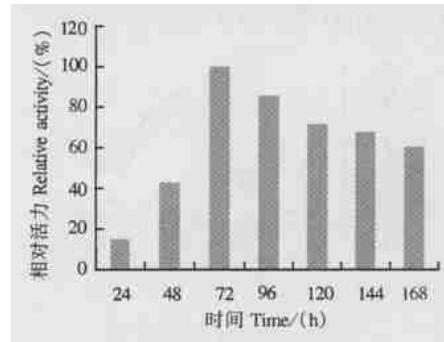


图 7 培养时间对产酶的影响

Fig. 7 Effect of different culture time on enzymatic activity

2.2 部分酶学性质

2.2.1 温度对酶活力的影响 在不同温度下, 铁氧化酶的活力, 结果如图 8 所示。由图 8 可知, 该菌铁氧化酶的适宜作用温度范围为 25—35℃, 最适反应温度为 30℃。

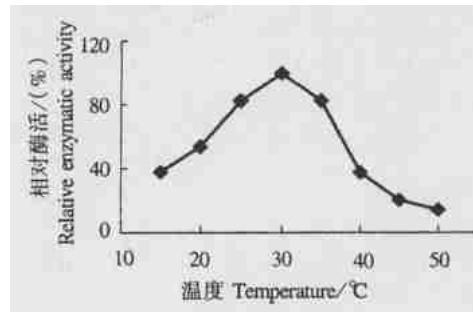


图 8 温度对铁氧化酶活性的影响

Fig. 8 Effect of temperature on enzymatic activity

2.2.2 温度对酶稳定性的影响 将酶液分别在 30℃, 40℃, 50℃, 55℃下保温不同时间, 在 30℃下测

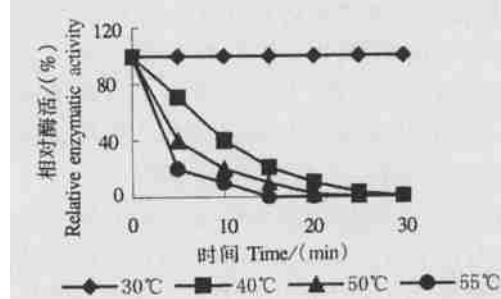


图 9 温度对酶稳定性的影响

Fig. 9 Effect of temperature on stability of enzyme

定酶活力, 结果如图 9。结果表明, 30℃时酶可稳定保存150min, 高于30℃时酶活损失较多, 当温度高于55℃时, 5min后酶的活力几乎全部丧失。

2.2.3 pH对酶活力的影响 分别在pH5.5—9.0的HEPES缓冲液中测定铁氧化酶的活力, 得到pH酶活力曲线(图10), 结果表明, pH对铁氧化酶的活力影响较大, 当pH为7.5时, 酶活力最高。

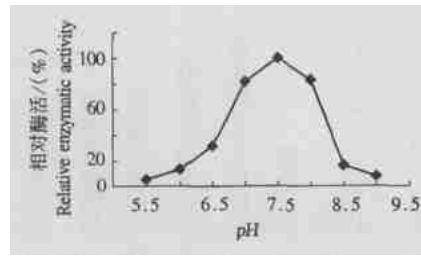


图10 pH对酶活性的影响

Fig. 10 Effect of pH value on enzymatic activity

2.2.4 pH对酶稳定性的影响 将酶液分别与pH5.5—9.0的HEPES缓冲体系混合, 放置5h后测

定残余酶活力(图11), 结果表明, 该酶在pH7.0—8.0之间较稳定。pH过高或过低对酶活力影响较大。

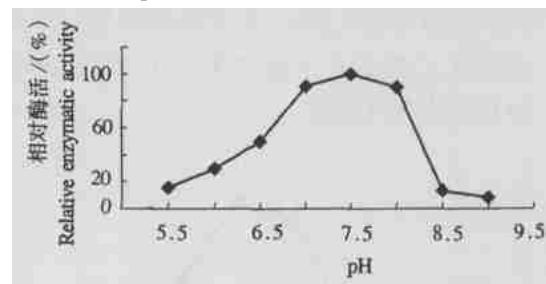


图11 pH对酶稳定性的影响

Fig. 11 Effect of pH value on stability of enzyme

2.2.5 金属离子对酶活力的影响 用5mmol/L的金属离子溶液分别与酶液混合, 于30℃保温30min后测定其酶活力, 以未加入金属离子的相对酶活力为100%。结果见表3。从表3可知, Ca^{2+} 、 Zn^{2+} 、 Mg^{2+} 对酶具有一定的稳定和激活作用, 而 Hg^{2+} 对酶有强烈抑制作用, Cu^{2+} 和 Al^{3+} 对酶有较强的抑制作用, K^+ 、 Fe^{2+} 和 Na^+ 对酶活力影响不大。

表3 金属离子对酶活力的影响

Tab. 3 Effect of metal ions on enzymatic activity

金属离子 Metal ion	相对酶活 (%) Relative enzymatic activity	金属离子 Metal ion	相对酶活 (%) Relative enzymatic activity
Ca^{2+}	112	Fe^{2+}	101
Cu^{2+}	65	Hg^{2+}	13
Mg^{2+}	108	Na^+	102
K^+	101	Al^{3+}	79
Zn^{2+}	109	None	100

3 讨论

3.1 氧化铁鞘细菌是适宜在水生态环境及低营养条件下生存的细菌, 本试验结果表明, 该菌的营养类型为化能有机营养型, 其能源主要来自有机碳源的氧化, 含铁有机碳源是其最适碳源。提示该菌在含铁活性污泥的处理中具潜在的应用价值。

3.2 Fe^{2+} 氧化酶是鞘细菌氧化铁离子的主要活性因子, 对该菌最适培养基和产酶条件的研究结果对该酶在给排水工程中的应用具有一定的参考价值。

3.3 鞘细菌氧化酶含量低, 且极易失活。其酶学性质的研究也因此受到限制。本文的研究结果属首次

报道。该酶促反应的最适温度、最适pH值以及酶对温度、pH值和金属离子的稳定性的研究对酶的分离纯化和活性保护具有一定的指导意义。

参考文献:

- [1] Barbic F, Savic I. Ecology of iron and manganese bacterial in potable groundwater springs [J]. *Microbiology*, 1995, 31(2): 129—158
- [2] Tsai Y, Chen. Substrate utilization characteristics of predominant filamentous and floc forming bacteria isolation from a chemical fiber factory waste water treatment plant [J]. *Water Science and Technology*, 1998, 37(4): 291—295
- [3] Piao Z S, Bao Z C, Li W, et al. Isolation and activity of bacteria catalyzing Mn^{2+} oxidation from Mn removing filter in a water plant [J].

Acta Scientiarum Naturalium Universitatis Jilinensis, 1997, **10**(4): 87—89. [朴真三, 鲍志戎, 李惟, 等。自来水厂除锰滤池 Mn²⁺ 氧化细菌的分离及其活性的研究. 吉林大学自然科学学报, 1997, **10**(4): 87—90]

[4] Xue L G, Wang W G. Study on the selection of high-yield PHB production strain by technique of protoplasts [J]. *Microbiological Communication*, 1999, **26**(3): 172—175. [薛林贵, 王维国. 利用原生质体技术选育聚β-羟基丁酸高产菌株的研究. 微生物学通报, 1999, **26**(3): 172—175]

[5] Shi J X, Chen Z Y. Transformation of Mn²⁺, Fe²⁺ by Mn²⁺-bacterium [J]. *Acta Oceanologica Sinica*, 1996, **18**(1): 85—89. [史君贤, 陈忠元. 锰细菌对锰、铁金属离子的转移作用. 海洋学报, 1996, **18**(1): 85—89]

[6] Lodi A, Solisio C, Converti A, et al. Calcium, zinc, copper, silver and chromium removal from wastewater by *sphaerotilus natans* [J]. *Bio-process Engineering*, 1998, **19**(3): 197—203

[7] Piao Z S, Bao Z C, Liu M L, et al. Mn²⁺ removal by immobilized siderocapsa [J]. *Acta Scientiarum Naturalium Universitatis Jilinensis*, 1996, **9**(2): 79—82. [朴真三, 鲍志戎, 刘牧龙, 等. 鞘铁菌除锰和固定化. 吉林大学自然科学学报, 1996, **9**(2): 79—82]

[8] Li H Z, Xu X P, Lin Y X, et al. Isolation identification and habitat conditions of Fe-Mn oxidized sheathed bacteria [J]. *Acta Hydrobiologica Sinica*, 1999, **23**(4): 311—315. [李惠珍, 许旭萍, 林跃鑫, 等. 铁-锰氧化鞘细菌的生境条件及分离鉴定. 水生生物学报, 1999, **23**(4): 311—315]

[9] Xu X P, She C X, Lin Y X, et al. Isolation, identification and

preservation of iron oxidizing sheathed bacteria from water [J]. *Chin J Appl Environ Biol*, 2002, **9**(3): 313—317. [许旭萍, 晨兴, 林跃鑫, 等. 水体中氧化铁鞘细菌的分离鉴定与保藏. 应用与环境生物学学报, 2003, **9**(3): 313—317]

[10] She C X, Xu X P, Lin Y X, et al. Study on the biochemical mechanism of Fe²⁺ oxidized sheathed bacteria FC9901 [J]. *Techniques and Equipment for Environmental Pollution Control*, 2002, **3**(9): 35—37.

[晨兴, 许旭萍, 林跃鑫, 谢华玲, 李惠珍. 鞘细菌 FC9901 氧化铁生化机制的研究. 环境污染治理技术与设备, 2002, **3**(9): 35—37]

[11] De Vrind J, Jong E W, Corstjens P. Oxidation of manganese and iron by *Leptothrix discophora*: Use of TMPD as an indicator of metal oxidation [J]. *Appl. Environ. Microbiol.*, 1990, **56**: 3458—3462

[12] Corstjens P, De Vrind J. Enzymatic iron oxidation by *Leptothrix discophora*: identification of Mn²⁺ oxidizing protein from *Leptothrix discophora* ss 1 [J]. *Appl. Environ. Microbiol.*, 1992, **58**: 450—454

[13] State Environmental Protection Administration. Analytical methods of water and water monitoring [M]. Beijing: China Environmental Science Press, 1989. [国家环保局主编. 水和水监测分析方法. 北京: 中国环境科学出版社, 1989]

[14] APHA AWWA&WPCF. Standardized examination methods of water and sewage (15th edition) [M]. Chinese edition translated by Song R Y et al. Beijing: China Architecture Industry Press, 1985. [宋仁元等译. APHA AWWA&WPCF, 水和废水标准检验法(第十五版). 北京: 中国建筑工业出版社, 1985]

STUDY ON THE OPTIMUM CULTURAL CONDITIONS FOR Fe^{2+} OXIDASE PRODUCTION OF Fe^{2+} OXIDIZED SHEATHED BACTERIA *SPHAEROTILUS NATANS* FC9901 AND SOME ENZYMATIC CHARACTERISTICS OF Fe^{2+} OXIDASE

LIN Yue-Xin, SHE Chen-Xing, XU Xu-Ping, XIE Huai-Ling and LI Hui-Zhen

(Bioengineering college, Fujian Normal University, Fuzhou 350007)

Abstract: Fe^{2+} - Mn^{2+} oxidizing sheathed bacteria is a group of bacteria with ability to oxidize Fe^{2+} and Mn^{2+} . In practice they were used to treat wastewater. Previous researches indicated that the functional component for Fe^{2+} - Mn^{2+} oxidation in the bacterium is Fe^{2+} oxidase. Because of the low content and easy inactivation, Fe^{2+} oxidase is difficult to be purified. This resulted in less information about the properties of the enzyme. A strain of Fe^{2+} oxidizing sheathed bacteria *Sphaerotilus natans* FC9901 was separated previously and used as material for Fe^{2+} oxidase investigation in this paper. Serial culture media were employed to culture the bacterium so as to explore the optimum conditions for enzyme productivity. The modified TMPD method was used to measure the enzymatic activity. After partially purification by ammonia sulfate precipitation and dialysis, the enzymatic properties were analyzed. The results were as follows: the optimum culture medium for enzyme production: 10g citrate, 1.2g NaNO_3 , 0.5g MgSO_4 , 0.5g $\text{K}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$, 0.005g CaCl_2 , and 0.0005g $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$ per litre. The optimum cultural condition for enzyme production in shaking flask: temperature 30°C, initial pH 7.0, medium volume 50ml/150ml flask, inoculum concentration 2%, shaking speed 150r/min, culture period 72 hours. The optimum temperature and pH for enzyme production during the culture: 30°C and 7.5, respectively. The enzyme was very sensitive to temperature. At the optimum temperature (30°C), the purified enzyme could be stored for 150min. Inactivation of the enzyme was very quick with the increase of temperature. When temperature was as high as 50°C, the enzymatic activity would completely lost within 5min. The enzyme was relatively stable in the range of pH 7.0~8.0. basic solution was more harmful to enzymatic activity than acidic. The oxidizing activity of the enzyme could be activated by Ca^{2+} , Mg^{2+} and Zn^{2+} , whereas Cu^{2+} , Hg^{2+} and Al^{3+} could inhibit the enzymatic activity. No effect of Fe^{2+} , K^+ and Na^+ on enzymatic activity was observed.

Key words: Oxidized sheathed bacteria; Fe^{2+} oxidase; Enzyme producing conditions; Enzymatic characteristics.