

Cd²⁺ 胁迫条件下椭圆小球藻的生理应答

李建宏 浩云涛 翁永萍

(南京师范大学生命科学学院, 南京 210097)

摘要: 研究了一株高重金属抗性的椭圆小球藻在 Cd²⁺ 胁迫下的生理变化, 结果显示, 在 10—240 μmol/L 浓度的 Cd²⁺ 胁迫下, 随着金属离子浓度提高, 叶绿素的总量减少, 光合放氧受到抑制。Cd²⁺ 离子浓度的提高, 导致了氧自由基的大大增加, 同时脯氨酸、SOD(超氧化物歧化酶) 以及 POD(过氧化物酶) 水平均大大提高。结果提示这些与消除自由基有关的代谢产物的积累, 有利于细胞减少胁迫造成的损伤。CAT(过氧化氢酶) 对 Cd²⁺ 离子是敏感的, 其活性与胁迫浓度呈负相关。

关键词: 小球藻; 镉; 自由基; SOD; POD

中图分类号: Q94 文献标识码: A 文章编号: 1000-3207(2004)06-0659-05

重金属是重要的环境污染物质, 重金属排放导致的水环境恶化正日益加剧, 探寻有效去除重金属污染的方法已为很多研究者所关注。微藻具有富积重金属离子的特性, 利用藻类修复重金属污染的水体已受到关注, 利用微藻净化含重金属废水具有一定的应用前景。小球藻对环境的适应能力较强, 易于批量培养。一些早期研究证明, 小球藻具有良好的选择富积重金属的能力, 可用于含重金属废水的净化。从电镀废水中分离到的一株椭圆小球藻, 对重金属有较高的耐受性, 对 Cd²⁺、Cu²⁺、Zn²⁺ 和 Ni²⁺ 离子都有很好的吸附去除能力^[1], 研究其在重金属胁迫条件下的生理应答机制, 探索其抗重金属的机理, 可为将其更好地运用于重金属废水的处理提供参考依据。

有关动物研究的结果表明, 重金属胁迫可诱导活性氧产生导致氧化伤害^[2]。对微藻在重金属胁迫条件下, 谷胱甘肽的代谢及抗氧化的作用也有一些报道^[3,4], 但对于其他相关的酶尚未见深入研究。本研究主要从 SOD、POD 等方面, 研究 Cd²⁺ 离子胁迫条件下小球藻的生理反应。

1 材料与方法

1.1 藻种及培养方法 椭圆小球藻(*Chlorella ellipsoidea*) 由本研究组分离获得。所用基本培养基为 BG-11。藻种预培养 3d 接入含有 200mL 培养液的

500mL 烧瓶中, 接种浓度为 OD_{560nm} 0.1 左右。两支 40W 日光灯于培养瓶两侧提供连续光照, 室温下静置培养 72h, 每天定时摇动数次。依实验设置加入不同浓度的 CdCl₂。

1.2 叶绿素含量及叶绿素 a 和 b 比值的测定 用 N,N-二甲基甲酰胺法提取测定叶绿素^[5]。所有测定均重复 3 次, 所得结果为 3 次测定的平均值(下同)。

1.3 光合速率的测定 参照李德耀等的薄膜氧电极法^[6]。

1.4 脯氨酸含量的测定 参照 Bates 等的方法测定^[7]。藻细胞用 3% 磺基水杨酸为介质, 经 GAS-COL 型挤压式细胞破碎仪(美国 Bio-RAD) 破碎提取后测定。

1.5 O₂ 含量的测定 参照王爱国和罗广华的方法^[8], 采用南京建成生物工程研究所活性氧测定试剂盒测定 O₂ 相对含量。

1.6 SOD 特性鉴定和活性的测定 离心收集的藻体, 用 0.1mol/L、pH7.8 的磷酸缓冲液重悬浮。挤压破碎仪破碎细胞。破碎液 4℃ 下 10 000r/min 离心 30min, 上清液即为粗酶液用以测定(下同)。

参照罗广华等的方法^[9]用聚丙烯酰胺凝胶电泳法测定。SOD 活性采用南京建成生物工程公司超氧化物歧化酶(SOD) 试剂盒进行测定。

1.7 POD 活性的测定 参照 Maehly 的愈创木酚氧

化法测定^[10]。

1.8 CAT 活性的测定 采用南京建成生物工程公司过氧化氢酶(CAT)测定试剂盒测定。

2 结果

2.1 Cd²⁺ 胁迫对椭圆小球藻叶绿素的影响

培养藻的叶绿素含量明显受到 Cd²⁺ 的影响, 总叶绿素含量与 Cd²⁺ 浓度呈显著的负相关 ($R = -0.94, P < 0.01$)。但低浓度 Cd²⁺ 对叶绿素的合成有一定的刺激作用。培养 72h 后, 叶绿素 a 在 10 $\mu\text{mol}/\text{L}$ Cd²⁺ 作用下含量有所增加, 比对照提高了 30%。虽然叶绿素 b 的含量有所下降, 但总叶绿素的量略有提高。随着 Cd²⁺ 浓度的进一步增大, 叶绿素的生物合成受阻, 含量一直呈下降趋势, 经 240 $\mu\text{mol}/\text{L}$ Cd²⁺ 处理的总叶绿素和叶绿素 a 含量已分别降为对照的 26.01% 和 34.70%。叶绿素 b 含量随 Cd²⁺ 浓度增加而迅速下降。叶绿素 a/b 值经 Cd²⁺ 处理后均高于对照组, 说明叶绿素 b 对 Cd²⁺ 更为敏感。

综合上述结果可见, 在 0—240 $\mu\text{mol}/\text{L}$ 的浓度范围内, 对椭圆小球藻有明显的胁迫毒害作用, 并且显示出剂量相关效应, 因此在下面的实验中均选择该浓度范围进行实验。

2.2 Cd²⁺ 胁迫对椭圆小球藻光合速率的影响

用薄膜氧电极测定藻细胞的光合放氧速率。结果显示, 在 Cd²⁺ 胁迫下, 藻细胞的光合作用受到明显抑制, 光合放氧速率随 Cd²⁺ 浓度的增加而逐渐降低, 两者间呈极显著的负相关 ($R = -0.91, P < 0.01$)。在 10 $\mu\text{mol}/\text{L}$ 低 Cd²⁺ 浓度下, 虽然总叶绿素合成增加, 但并未提高光合作用能力, 光合放氧速率为对照的 83.62%, 当 Cd²⁺ 浓度增大到 240 $\mu\text{mol}/\text{L}$ 时, 仅为对照的 31.01%。

2.3 Cd²⁺ 胁迫对椭圆小球藻脯氨酸含量的影响

比较不同浓度 Cd²⁺ 处理 72h 后椭圆小球藻脯氨酸含量的变化(图 1), 随着 Cd²⁺ 浓度的加大, 藻细胞内脯氨酸含量也相应地增高。在 0—120 $\mu\text{mol}/\text{L}$ 范围内脯氨酸含量与 Cd²⁺ 浓度显著正相关 ($R = 0.83, P < 0.01$), 10 $\mu\text{mol}/\text{L}$ 时已是对照组的 1.89 倍, 120 $\mu\text{mol}/\text{L}$ 时达到对照组的 2.86 倍。240 $\mu\text{mol}/\text{L}$ Cd²⁺ 处理组含量虽略有回落, 但仍高于对照, 为对照的 2.33 倍。脯氨酸含量的变化常作为植物逆境生理的一个指标, 其含量的增加有利于保持原生质与环境的渗透平衡, 抵御 Cd²⁺ 的影响。

2.4 Cd²⁺ 胁迫对椭圆小球藻 O₂⁻ 含量的影响

不同浓度 Cd²⁺ 处理下, 藻细胞的 O₂⁻ 含量发生

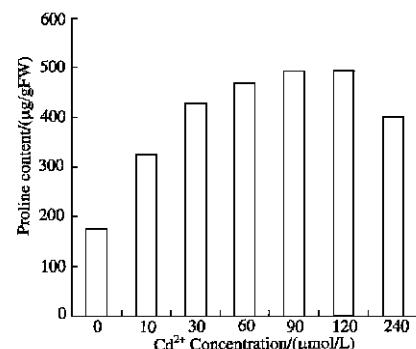


图 1 不同浓度 Cd²⁺ 对脯氨酸含量的影响

Fig. 1 Effect of different Cd²⁺ concentration on proline content

显著变化(图 2), 随着 Cd²⁺ 浓度的增加而增加, 90 $\mu\text{mol}/\text{L}$ 时达到最高值 ($R = 0.97, P < 0.01$), 为对照组的 2.07 倍, 120 $\mu\text{mol}/\text{L}$ 和 240 $\mu\text{mol}/\text{L}$ 时虽略有下降, 但仍分别相当于对照组的 1.85 倍和 1.63 倍。 Cd²⁺ 胁迫造成了藻细胞内 O₂⁻ 含量的剧升, 从而影响细胞的正常生理代谢活动。

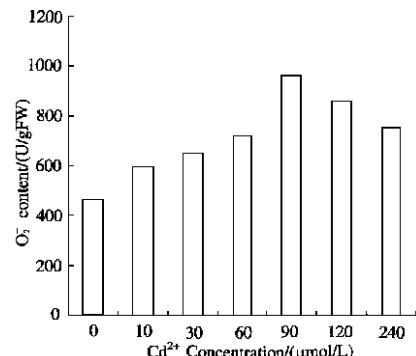


图 2 不同浓度 Cd²⁺ 对 O₂⁻ 含量的影响

Fig. 2 Effect of different Cd²⁺ concentration on O₂⁻ Content

2.5 Cd²⁺ 胁迫对椭圆小球藻 SOD 活性及同工酶谱的影响

聚丙烯酰胺凝胶电泳可以清楚地显示椭圆小球藻具有 4 条 SOD 同工酶带(图 3), 它们均可被氯仿乙

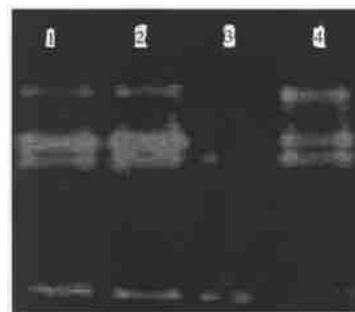


图 3 椭圆小球藻 SOD 同工酶的电泳鉴定

Fig. 3 Patterns of SOD isozymes in *C. ellipsoidea* on polyacrylamide gel electropherograms

1. KCN; 2. 对照; 3. 氯仿-乙醇; 4. H₂O₂

醇所抑制, 但是又都对 KCN 不敏感, 四条带中迁移速率最快的一条带又可被 H_2O_2 抑制, 为 Fe-SOD。其余三条带则不被抑制, 均为 Mr-SOD^[9]。

SOD 酶是生物体内重要的保护酶之一, 可有效清除生物体内的氧自由基。图 4 表明, Cd^{2+} 浓度低于 $90\mu\text{mol/L}$ 时, 总 SOD 活性较对照略有下降, 随后开始上升, 至 $120\mu\text{mol/L}$ 时达到最高值 ($R = 0.77$, $P < 0.05$), 为对照的 130%。可能是由于在 Cd^{2+} 胁迫下, 藻细胞内可能产生较多氧自由基, 诱导了 SOD 酶活性的增加, 以抵御和适应逆境。

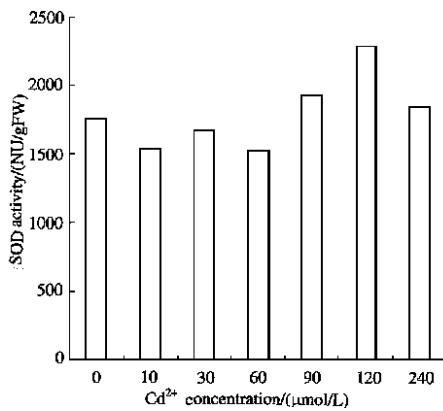


图 4 不同浓度 Cd^{2+} 小球藻对 SOD 活性的影响

Fig. 4 Effect of different Cd^{2+} concentration on SOD activity

取等克鲜重的椭圆小球藻粗酶液通过聚丙烯酰胺凝胶电泳(图 5), 可以清楚显示在 Cd^{2+} 的影响下, 椭圆小球藻的同工酶带发生了改变。经过不同浓度 Cd^{2+} 处理后, 四条带中迁移速率最快的 Fe-SOD 同工酶带均消失, 而另三条 Mr-SOD 同工酶的量略有增加。

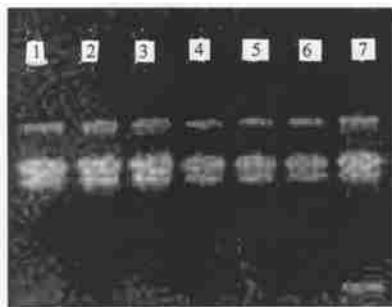


图 5 不同浓度 Cd^{2+} 对小球藻 SOD 同功酶条带的影响

Fig. 5 Effects of different Cd^{2+} concentration on SOD isozymes bands; 条带 1—6 自左向右依次为 $240-10\mu\text{mol/L}$ Cd^{2+} 处理样本; 7 为对照组

2.6 Cd^{2+} 胁迫对椭圆小球藻 POD 活性的影响

POD 是一种卟啉环含铁蛋白酶, 其主要功能是减轻有机氢过氧化物对机体的伤害, 其活性的应激性变化被广泛作为反映植物受逆境胁迫程度的一个重要指标。图 6 所示为不同浓度 Cd^{2+} 处理 72h 后

POD 的活性, 由图可见, 藻细胞 POD 活性强烈地受到 Cd^{2+} 的诱导, $10\mu\text{mol/L}$ 时就提高了 71%。随着 Cd^{2+} 浓度的增高, POD 活性大幅度上升, 至 $90\mu\text{mol/L}$ 达到最高值, 为对照的 4.84 倍, 在此范围内 POD 活性与 Cd^{2+} 浓度呈极显著的正相关 ($R = 0.97$, $P < 0.01$)。之后 POD 活性略有下降, 但是仍远高于对照, $120\mu\text{mol/L}$ 和 $240\mu\text{mol/L}$ 时分别为对照组的 4.10 倍和 3.63 倍。

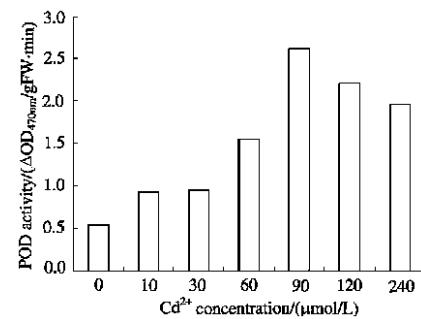


图 6 不同浓度 Cd^{2+} 对 POD 活性的影响

Fig. 6 Effect of different Cd^{2+} concentration on POD activity

2.7 Cd^{2+} 胁迫对椭圆小球藻过氧化氢酶(CAT)活性的影响

CAT 是植物细胞内另一个重要的抗氧化酶, 其主要功能也是清除细胞内过量的过氧化氢。与 POD、SOD 不同的是, 随着 Cd^{2+} 处理浓度的升高, CAT 活性不断下降(图 7), $30\mu\text{mol/L}$ 时为对照组的 64.96%, $90\mu\text{mol/L}$ 时降到最低, 仅达到对照组的 23.36%, CAT 活性与 Cd^{2+} 浓度呈极显著的负相关 ($R = -0.71$, $P < 0.01$)。

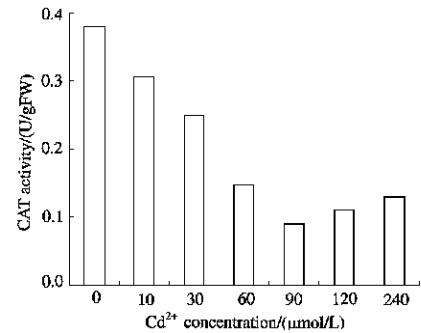


图 7 不同浓度 Cd^{2+} 对 CAT 活性的影响

Fig. 7 Effect of different Cd^{2+} concentration on CAT activity

3 讨论

$10\mu\text{mol/L}$ Cd^{2+} 引起了藻细胞叶绿素含量的增加, 可能是由于低浓度 Cd^{2+} 在一定程度上刺激了藻体叶绿素的生物合成。随着 Cd^{2+} 浓度的继续升高, 叶绿素含量呈不断下降的趋势。镉导致叶绿素含量下降与镉抑制叶绿素酸酯还原酶和影响氨基-γ-戊

酮酸的合成有关^[11], 也可能是镉直接破坏了叶绿体结构及功能和干扰植物对营养元素的吸收、转移^[12]。镁是组成叶绿素正常结构所必需的元素, 在 Cd²⁺ 胁迫下, 藻细胞对 Mg²⁺ 的吸收和运输受到干扰和影响, 同时 Cd²⁺ 进入藻细胞后可能直接竞争 Mg²⁺ 的结合位点或与叶绿体蛋白质的巯基相结合, 使其失活。测定叶绿素 400—700nm 范围内的吸收光谱发现, 实验中经过不同浓度 Cd²⁺ 处理的叶绿素吸收峰值与对照组相一致, 而并未发生明显的漂移现象(数据未列出), 表明 Cd²⁺ 并不是通过这种机制影响藻体叶绿素的结构。单细胞藻类通过光合作用将光能转化为化学能, 是保证其进行正常生理代谢的能量基础, 光合色素含量的降低必然导致其光合作用能力的下降, 从而抑制藻细胞的生长。伴随着叶绿素含量的降低, 椭圆小球藻的光合速率也与 Cd²⁺ 浓度呈极显著的负相关, 随着 Cd²⁺ 浓度的增大相应降低。

逆境胁迫导致生物体内产生大量的活性氧。实验结果显示, 随着 Cd²⁺ 浓度的增高, 藻细胞的 O₂[·] 含量也不断地上升。McCord 和 Fridovich^[13] 提出的自由基伤害学说, 已广泛用于需氧生物抗逆境伤害机理的研究。在逆境条件下, 植物体内的 O₂[·]、OH[·]、¹O₂ 等自由基产生的 H₂O₂ 含量增加, 过量的自由基与质膜和生物大分子反应, 导致脂质过氧化, 蛋白质降解, DNA 突变, 对生物体造成伤害。然而, 生物体在正常的代谢过程中, 可通过酶促和非酶促保护系统, 使自由基的产生和消除维持动态平衡。植物体内的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等抗氧化保护酶系统能清除逆境胁迫所诱导产生的过多的自由基, 保护细胞免受伤害^[14]。实验结果表明, Cd²⁺ 胁迫使藻细胞 SOD、POD 活性上升, 其中 POD 活性上升幅度更为显著。SOD 具有清除 O₂[·] 的能力, 它能催化 O₂[·] 发生歧化反应: 2O₂[·] + 2H⁺ → H₂O₂ + O₂, 从而清除植物体内的 O₂[·]。POD 则能清除细胞内过多的 H₂O₂ 等过氧化物, 保护细胞的膜结构。两者在 Cd²⁺ 胁迫下活性相应的升高, 作为应激性反应有利于清除藻细胞内由 Cd²⁺ 诱导所产生的过多的自由基, 提高藻细胞对 Cd²⁺ 的耐性能力。这也说明在逆境胁迫下, 藻细胞试图通过增加其 SOD 等抗氧化防御系统成分的能力来削弱活性氧的影响, 这与 Buonaurio 等^[15] 研究植物对病原菌作用产生的氧化应激的结果相类似。而 CAT 活性则随 Cd²⁺ 浓度的增大而减小, 均明显低

于对照组, 表明 CAT 对 Cd²⁺ 的毒害很敏感, 因此在抗氧化过程中作用不大; 由于 Fe-SOD 活性受到抑制, 实验中所测定的总 SOD 活性与对照相比, 虽然有所增高但幅度不是很大。

Cd²⁺ 引起了藻细胞脯氨酸的累积, 其含量随着 Cd²⁺ 胁迫程度的加剧而相应升高, 脯氨酸作为重要的渗透调节物质, 它的积累有着对逆境积极的适应意义^[16]。同时, 脯氨酸也参与消除自由基的消除^[17]。

通过本研究的结果可见, Cd²⁺ 胁迫可导致椭圆小球藻 O₂[·] 含量增加, 细胞通过提高 SOD、POD 以及脯氨酸含量来消除自由基的危害, 从而提高小球藻对重金属胁迫的抗性。

参考文献:

- [1] Hao Y T, LI J H, Pan X et al. Tolerance of *Chlorella ellipsoidea* and its removal of 4 heavy metals[J]. *J Lake Sci*. 2001, **13**(2): 158—162
[浩云涛, 李建宏, 潘欣 等. 椭圆小球藻对 4 种重金属的耐受性及富积. 湖泊科学, 2001, 13(2): 158—162]
- [2] Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions [J]. *Free Radic Biol Med*, 1995, **18**: 321—336
- [3] Noctor G, Arisi A C M, Jouanin L, et al. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants[J]. *J Exp Bot*, 1998, **49**: 623—647
- [4] Nagalakshmi N, Prasad M N. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in *Scenedesmus bijugatus* [J]. *Plant Sci*, 2001, **160**: 291—299
- [5] PAN X, LI J H, HAO Y T et al. A improved method for chlorophylla extraction with DMF[J]. *Biotech*. 2001, **11**(1): 39—41[潘欣, 李建宏, 浩云涛, 等. DMF 提取微藻叶绿素 a 方法的改进. 生物技术, 2001, 11(1): 39—41]
- [6] LI D Y, Ye J Y. Preparation of membrane oxygen electrode and measurements of respiration and photosynthesis[J]. *Plant Physiol Can* 1980, (1): 35—40[李德耀, 叶济宇. 薄膜氧电极的制作与呼吸或光合控制的测定. 植物生理学通讯, 1980, (1): 35—40]
- [7] Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies[J]. *Plant and Soil*, 1973, **39**: 205—207
- [8] Wang A G, Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. *Plant Physiol Can* 1990, (6): 55—57[王爱国, 罗广华. 植物的超氧自由基与羟胺反应的定量关系. 植物生理学通讯, 1990, (6): 55—57]
- [9] Wang A G, Luo G H. Electrophoreses and activity expression of plant SOD[J]. *Plant Physiol Can* 1983, (6): 44—45[罗广华, 王爱国. 植物 SOD 的凝胶电泳及活性的显示. 植物生理学通讯, 1983, (6): 44—45]
- [10] Maehly A C. Plant Peroxidase. Methods in Enzymology, [M] Vol II, San Diego: Academic Press, 1955, 801—813
- [11] Stobart A K, Griffiths W T, et al. The effect of Cd²⁺ on the biosynthesis of chlorophyll in leaves of barley[J]. *Physiol. Plant*, 1985, **63**:

293—298

[12] Wang H X, Basic Pollution Ecology, [M] Kunming: Yun Nan University Press, 1990, 71—148[王焕校. 污染生态学基础. 昆明: 云南大学出版社, 1990: 71—148]

[13] McCord J M, Fridovich I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein) [J]. *J. Biol. Chem.*, 1969, **244**: 6049—6055

[14] Zhou C F, Wu G R, Shi G X *et al*, The role of antioxidant system in Cu^{2+} stress resistance in *Alternanthera philoxeroides* [J]. *Acta Bot Sin* 2001, **43**(4): 389—394[周长芳, 吴国荣, 施国新等. 水花生抗氧

化系统在抵御 Cu^{2+} 胁迫中的作用. 植物学报, 2001, **43**(4): 389—394]

[15] Buonauro R, Tore G D, Montalbini P. Soluble superoxide dismutase (SOD) in susceptible and resistant host-parasite complex of *Paseolus vulgaris* and *Uromyces phaseoli* [J]. *Physiol. Mol. Plant Pathol.*, 1987, **31**: 173

[16] Mehta S K, Gaur J P. Heavy metal induced proline accumulation and its role in ameliorating metal toxicity in *Chlorella vulgaris* [J]. *New Phytol.*, 1999, **143**: 253—259

[17] Alia, Mohanty P, Matysik J. Effect of proline on the production of single oxygen [J]. *Amino Acids*, 2001, **21**: 195—200

PHYSICAL RESPONSES TO Cd^{2+} STRESS IN *CHLORELLA ELLIPSOIDEA*

LI Jiarr Hong, HAO Yun Tao and WENG Yong Ping

(Life Science College, Nanjing Normal University, Nanjing 210097)

Abstract: A high heavy metal resistant *Chlorella ellipsoidea* strain was isolated from the electroplating waste water. Former researches had showed the alga had high tolerance to heavy metals and was able to eliminate Cu^{2+} , Zn^{2+} , Ni^{2+} and Cd^{2+} effectively from water. So it could be used for decreasing heavy metal pollution. To understand the physical mechanisms of the alga against the toxicities of heavy metals, we studied the physical responses of the alga to Cd^{2+} stress. In this research, we focused on the physical reactions to radical injuring in cells caused by Cd^{2+} .

Methods: Photosynthesis O_2 release was measured by membrane oxygen electrode; Superoxide anion radical was measured by xanthine oxidase and NBT system; Superoxide dismutase (SOD) activity is determined by hydroxylamine assay developed from xanthine oxidase assay; Catalase (CAT) was measured by molybdate acid method; Peroxidase (POD) was determined by method of guaiacol oxidation; Proline was measured by the method of Sulosalicylic acid.

Results: Chlorophyll content and photosynthetic O_2 release were measured as indicators of cadmium toxicities. Results showed that, between 10 to $240\text{ }\mu\text{mol/L}$ Cd^{2+} , total chlorophyll content and photosynthesis O_2 release decreased when the ion concentration increased. The lower concentration of Cd^{2+} , $10\text{ }\mu\text{mol/L}$ induced higher chlorophyll a, it was 130% of the control. Cadmium caused the ratio of chlorophyll a/b rising. When Cd^{2+} was over $30\text{ }\mu\text{mol/L}$, the ratio of chla/b rose from 1.22 to 2.61. These showed Cd^{2+} in this concentration range could cause toxicities to the *C. ellipsoidea*. So this concentration range of Cd^{2+} was used as stress to induce radicals and observe the physical responses of the alga. Results showed Cd^{2+} produced more O^{2-} in algal cells. When Cd^{2+} was $90\text{ }\mu\text{mol/L}$, O^{2-} was 2.07 times as much as the control in 72hrs after incubated. Meanwhile, POD was induced strongly and reached the highest level. It's content was 4.84 times concentration of the control. But for $120\text{ }\mu\text{mol/L}$ and $240\text{ }\mu\text{mol/L}$ Cd^{2+} , POD content was 4.10 and 3.63 times respectively; There were four SOD isoenzyme bands in the electrophoresis gel. The least molecular band was Fe-SOD, and the other three were Mn-SOD. Highest SOD content was induced by $120\text{ }\mu\text{mol/L}$ Cd^{2+} , reached 1.3 times as much as the control. Two types of SOD showed different responses to cadmium stress. Mn-SOD obviously increased. That caused total amount of SOD increasing. But Fe-SOD decreased; Proline content and Cd^{2+} concentration in algal cells was correlated. When Cd^{2+} was $10\text{ }\mu\text{mol/L}$, proline content was 1.89 times of the control. Proline reached highest level, 2.86 times of the control in $120\text{ }\mu\text{mol/L}$ Cd^{2+} . These results suggested that increasing of free radical elimination enzymes and substances was helpful to the algae to resistant cadmium injuring. However, as one of the most important anti-oxidation enzymes, CAT showed an opposite response to the Cd^{2+} . Its content went down with Cd^{2+} going up. When Cd^{2+} was $90\text{ }\mu\text{mol/L}$, CAT activity was 23.36% of the control. This meant CAT was very sensitive to Cd^{2+} .

Conclusion: Cd^{2+} could induce radicals which were toxic to algal cell. The high heavy metal resistant *C. ellipsoidea* strain could produce more SOD, POD and proline to decrease the injuries.

Key words: *Chlorella*; Cadmium; Radical; SOD; POD