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EFFECTS OF FISH CULTURE ON DISSOLVED PHOSPHATASE IN GROUNDWATER

CAO Xiu Yun, SONG Churr Lei, PENG Liang, L1 Jiarr Qiu and ZHOU Yt Yong
(Institute f Hydrobiolagy, The Chinese Academy f Sdences, Wuhan 430072)

Abstract: Extracellular phosphatase plays a arucial role in P cycling in aquatic ecosystem. Little atention has been paid on the
occurrence of extraccllular phosphatase in groundwater. Furthermore, effects of aquaculture on extracellular phosphaase, espe

cially dissolved alkaline phosphalase, were inadequately studied. The objective of this study was to investigaie the influences of
fish culture on dissolved alkaline phosphatase, including its origin. adivity and kinetics, in freshwater. Water was taken from a
well, as a control, and 10 different pools rearing a variety of fishes with the same well water in Noverber and December 2001, as
well as May 2003, for 5 times. Variables involved in peycling, such as orthophosphate( o P) concentrations, size fractionation of
alkaline phosphatase. responses of dissolved alkaline phosphatase adivity ( DAPA) to pH, temperature, CuSO,, ZnS0O,, EDT' A-
2Na. as well as sufactants( CTAB and Triton X-100) and its kinetics, were deternlined. DAPA in groundwater. with and without
fish rearing was inhibited by Cu** CTAB with different concentrations and EDI'A-2Na at higher concentration (2mmol/L). At
the same time, it was enhanced by Triton X-100 with different concentrations. The sensitive responscs to the spec ificinhibitors
provided further evidences that alkaline phosphatase occurred in groundvaer. In the water of glass jars with fish culturing, DAPA
increased significantly, and the extent of increase was depended on fish species cultured. In details, groundwater with Trichogoser
trichepterus and Botia licontei rearing showed significantly higher DAPA than controls. Besides. DAPA was undctedable in the
groundwater with Mastcembetus erythrotaenia, Aymphysodon acquff ascaata, Monodactylus argentens, Apteronotus aslyrons,

Acipenser snensis Grtey. Cyprinus capio Linnaeus rearing, but detedable in the water with Gichasona synpolum, Botia licontei,

Mylipharyngodon piceus Richardon, Ctenopharyngodon idellus Cuwier et Valenciennes, Hypophthalmichthys molitrix , Aristichthys
nobilis rearin and reshow ed the highest value wih Trichogoster trichgptern rearing , DAPA was characterized in control and that
rearing Trichogoster trichepterus and Botia licontei ( culiure medium) . It showed the highest level at 35 Cin cntrol , while it
peaked at both 35 ‘C and 55 Cin the culture medium. Iis optimum pH was pH 7. O in control , but was pH 5. 8 and pH 8. 9 in
the culture medium . Moreover , it was enhanced by Zn?* at higher concentration( 0. Smmol/L) in control, but was inhibited signif-
icantly by Zn** at different concentrations in culture medium. Kinetics of dissolved alkaline phosphatase conformed to the
Michaelis Menten model. The significantly higher V, . and K values were recorded in the wlture medium compared to those in
oontrol. In short, DAPA in culture medium exhibited distind models responding to temperature , pH ZnSO4 as well as higher V.
and K,,values. In addition , alkaline phosphatase adtivity associated wih particles( > 3. OHm) was very low, or undetectable, cour
pled with scarcely observed algae cells, indicat ing that phytoplankton is unlikely to be the main producer of DAPA. Hence the oc
currence of DAPA was causatively linked to fish culture. Extracts from particles collected in the bottom of jars with fish culture,
by distilled water, exhibited DAPA. It showed a similar mamner responding to pH values with that of water in the same jars, inr
plying that the solid wastes resulted from fish culture is one of the sources providing dissolved alkaline phosphatase.

Key words: Groundwater; Fish culture; Dissolved phosphatase



