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3mL , ddH,O 2—3 poratbn ), : 94C dm n
. 200 HL ddH,0 , 96°C 155 70°C Imn 72C Im i
5x10° /mL NestPCR 16S RNA 30 ; 72C 7m n PCR
[ 11], (1 : (H CI 1L PCR
PCR : CC CG 1ML 2L 0.5 ML, :
dNTP 2 KL 10 x buffer(Takara ) 0.3BLTag  94C 4m in 94C 30s 58C 30s
(Takara ) 1ML DNA, ddH,0 20 72C 30s 25 R 72°C
L, PCR G eneAmp2400 ( PE Cor Tm in
1 PCR
Tab. 1 PCR priners
Priner (5-3") Sequence (5-3") T (C)
CC TGTAAAACGACGG CAGTCCAGA CTCCTA CGGGA GGCAGC 72
CG CGCGTTAGCTACGGCACGGCTCGG 72
CH AGCCAAGTCTGCCGGTCAAATCA 58
Cl ACCGCTACA CTGGGAATTCCTG 58
CSTF GYCACGCCCGAAGTCRTTAC 60
UN R3S CCTCTGTGTGCCTAGGTATC 60
1.3 HPLC MG-ILR  mol/L KH,PO,, {H= 3) ;A 60k B
40% 1.0 mL/m i 10 UL
1.3.1 25mL 1.4 DNA IS
. . 1.4.1 DNA DNA
, 20mL S 20n in TES ' , 600 K1,
10°C, 10000 r/m n 5m L TES (50 mmol/L Tris-C] fH8. Q 20mmol/LEDTA,
20 mL 8% 20m i, 50 mmol/L. NaC] 0.25mmol/L ) 30HL 10%
5min 2 .  37C 30m i, 20 HL K
3 2 3 (20mg/mL) 50 UL 10% SDS 50°C 30m i,
1 4 150 UL 10% DS  60C 20— 40mn 12000 1/
W aters SPE ODS , SPE m in 5m in / / )
15 mL , 20 mL 2.5 , DNA
4 10 mL /m in 1 ULRNA (10mg/mL) TE
15mL 20% SPE 1.42 DNA ITS CSIF/
10 mL 90% , UN I23SR 165-23S DNA T'S
\ ImL e ( 1) PCR : 94T
1. 5mL , 5m i 35 94C Imin 50C Imn
500 1. 60% 72C Imn 72C 10m in
1.3.2 HPLC MC-LR E.Z.N.A PCR (Omega )
MC-LR 238m ,
1.4.3 Mega 2. g"
, . 165235 I'S ., NJ
. 1.5
" HPLC 1.5.1 ( Carotenoids)
A, B (0.05  (Chh) 3mL 8000 r/min
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5m i, , 3mL 80% , rate ETR) "'
22— 24h 8000 r/m i Y= AF JF,'= (F.-F,)IF,
5m n 663 nm 450 m ETR ( Mmol electrons/m”* s) = Y XPAR X
: AF % 0.5
Chhk (mg/L) = 12. 72%A¢g — 2. T XAas= 12. 19 F,’ ( Saturation pulse)
X A ! . F, (A ctinic ligh) . PAR

( Photosythetically actwe radiaton, Hm oL

photon /m” s); AF
(A bsorpton Factor), 0.84 0.5

Cawmtenoids (mg/L) = 4. 14450 — 0. 0435Chl -
0.367Chb=4. Us— 0.0435Chk '

, Chlb= 0
1.5.2 (GPO) 3mL 500  PSII ( 50h PSI )
, 8000 r/mmn Sm n , D)
3 mL PBS (0.05mol/L, H6. 8)
8h , 3 2.1
c-pc'™ 8000 r/m i 5m in :
615 nm 652 nm 2—3 ,
C-PC
C-PC (mg/mL) = (Ags— 0. 474 XAsp ) /5. 34 Lol , ,
16 (1)
, 4500 r/ M. aeruginoss AC DS PCC7820
mn 4m n ,
, 0.2 (Asso) NestPCR CC-CG
U= (lo-hoy ) /(-t) " 500 bp PCR ( 1A)
X1 X2 (n)
(&) ( ) PCR :
1.7 (Light response curve) CH-CI )
(Phyto-PAM, W alz s ) 100 bp ( 1
©@(PSE®) B)
PS® (Effee- ) M. aemg ino-

2

(Electron transfer ~ sa mAC mDS ~ m7820

tive quantum yie )

500 bp
1 N estPCR
Fig 1 The dentification ofM icrocystis by whole-cellNestPCR using Priners CC /CG(A) and Prmers CH /CI (B)
A CC /CG ;B CH/CI

-marker 1. M. aeruginosa AC; 2. M. aeruginosa DS, 3. M . aeruginosa PCCT820, 4. M icrocy stis mAC; 5. M erocystis mDS 6. M icrocystis m7820
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2.2 HPLC MC-LR 11. 5Sm , MCIR
M C-IR M icrocystis mAC mDS
, HPLC 238 nm m 7820 11.5m n
2 , MCG-IR ,
M . aeruginosa AC DS PCC7820 MC-LR,
M. aeruginosa AC
40 10
A‘ Microcystis mAC
20 > / \A\
\/ \\4"\
/ M,
0} 0 4
0 d 10 0 i 10
M. aeruginosa DS
5 Microcystis mDS
50
0 o \
0 5 10 15 0 5 10 15
|
M. aeruginosa PCC7820
401 40 Microcystis m7820
20 | 20
A
0f / 0
0 5 10 15 0 5 10
Retention time (min)
2 HPLC
Fig. 2 HPLC analysis of cellular extraction of mutant and w ild strains
2.3 s TAC 17 44 45 78 92 M . w esenbergii CL5
16S 1DNA CSF 23S M. wesenbergiitNC1 25 M. wesenbe—
1DNA UNTI 23S 6 giitTACS2 57 Synecho-
DNA, 470bp 165 cystis PCC6803 : 4
DNA, s 23S DNA 3 : M. aeuginosa TACT1 M. virdis
NJ 16S-23S 1DNA TAC 17 44 45 78 92 M. w esenbergii CLS s
Irs 16S-23S IS , C lusteriv; M.

M. aeugmnosa TACT1 M. virdis

w esenbergit NC1 2 5

M . wesenberg i TACS52 57
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Clister@®; C luster M . aeruginosa 30% M. aeuginosa DS ,
AC DS  PCC782Q C luster M icrocy stis mAC
mDS m 7820 Ir's 89 W M.aeruginosa AC
( 3) = 74 O M.aeruginosa DS
)
M. aeuginosa AC DS  PCC7820 Clus- = 6] A Microcystis mAC
ter M icrocystis mAC mDS m 7820 > . A Microcystis mDS
Z 54
C ister ® , S
= 44
o
2 34
C luster 5
. S
M.viridis TAC17 . S 47
- M.aeruginosa TAC71 s =
———M.viridis TAC44 a1 | & ==
100 _‘\/Jru.sw‘lhy_r\guv TAC38 * |C luster | —
trds T s | 0 5 10 15 20 25 30 35 40
56 f M.viridis TAC78 A Time(d)
M.viridis TAC92 :
M. wesenbergii NIES111
M.wesenbergii NC5 4
M.wesenbergii TACS2 Cluster II
99 M, wesenbergii TAC57 ) Fig.4 Growth curves ofmutant stains and w ild stra ins
[ M.wesenbergii NC1
} H wesenber: g/I[T)\JSL 2
% Nfacruginosa AC  + |Clusterlll 2.5 /
M.aeruginosa 7820 .
96 Microcystis mAC 1A ,
99| Microcystis mDS {Cluster[V
Microcystis m7820 - / ( 5)
Synechocystis PCC6803
3 165-23S DNA II'S 3 /
2
Fig. 3 16S-23S DNA II'S can parison of toxic (A ) and non-tox ic /
M icrocy stis ’ ’
A ; GenBank M. ?
aeruginosa TACT1, ABO15362 M. wesambegii NC3 AB015395 NC3 6 , 12 15
ABO15393 M. wiidis TAC17 ABO15398 TAC44, AB015399; TAC45 , 5
ABO1540Q0 TAC78 ABO15401; TAC92 ABO015402 M. wesenbergii
2 2
NIESI1L, ABO15388 TAC38 ABO015389 TAC52 ABO01539Q TAC57 /
ABO1539t CL§ ABO015392 NCL1 ABO015393 NC2 ABO15394 4 ’
NCS, AB01539% Synedocystis PCC6803 D90916 ( )’
, /
2.4 Chhk
4) , 3d Bito B M.aeruginosa AC
) 0O M.aeruginosa DS
A Microcystis mAC
» 36d ’ j A ”:c:zz,: :::j 21)9
, , 0.35 Microcystis mDS
M icrocy stis mDS M. - ‘\1 /%\
aerug inosa DS , 33 § 2 G\ l K
2 030+ /L
(6.85910.622) mg/L  (5.23430.178) mg/ 5 l 1\ -L\‘\
L M icrocy stismAC M . aeuginosa AC 5 A/A;Alzlé
+ 0251 A< % =
3B (5746 F % $\3
0.390) mg/L.  (5.701 £0.545) mg/L o o % g/ﬁ\\g/%\é
. . 0.20 —T T T 1
, M icrocy stis mAC 0 5 10 15 20 25 30 35
M . aeruginosa AC , 0.044 Time(d)
s M. aeruginosa DS 0.0330 £ 5 /
0. 0017M iCTO(,yStiS mDS 0. 0432 -|—_0 0033 Fiz 5 Camwtenods/Chle of burM iaocystis strains
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2.6 C-PC/Chh (7 .
6 C- ) a s
PC /Chk , ®
, , C-PC ,
, C-PC ETR,.. .
1. 54— 2.81
8- M.aeruginosa AC ,AC DS ETR
et il .mAC  mDS TR
21 E=3 Microcystis mDS % ’ _mDS  ETR
z ] DS mAC  ETR AC 2
; , , mDS  ETR, .

o
%e% % I

<¢

IR

3

0%

6 C-PC /Chk
Fig 6 GPC/Chl of burM erocystis strains

, G-pPC

C-PC
M . aeugmnosa DS
4.035+0.289 30
84. 1%; mDS
4. 125 %0.41Q

C-PC/Chhk 6
7.428 0. 557,
3. 197 £0.0896
2% ,
,  24d
M icrocystis mAC M. C-PC /Chh

87. 1%

aeruginosa AC
49. 8%
2.7
PSII (Y) AF IE, ,
, AF I, :
PSII (QA
) Y PAR

PS@® (ETR) (PAR)

( Lightlm ited region), ETR  PAR
, a;
rated region), ETR
, ETR ,

( Ligh+satr
(ETR ..y ),

PAR

[22]

(k) I= ETR,. xa

DS DS ETR..x 39152127 33
(66.70£1.20) (88.67*3.51) (97.30 =
0.89) (8257%3.78) (93.10%0.57) (91.00 %
2. 15) BmdL electrons/m® * s mDS  ETR..
(90.43 £1.82) (98.13 £2.44) (117.07 £

2.32) (101.43 £525) (115.00 £ 4.47)

(133.53 £9.01) Hmd. electrons/m” * s mDS
ETR,.« DS  10. 6% — 46. "0 mDS «a
DS( 27. 5o —

60. 4% ) , mDS
PS® (Y= AF IR/ = (FAF) IF.))
DS mDS  PS® (ETR =
YXPAR x AF x 0.5) DS mAC AC

, Ix

(458.8 £14.3)  (619.0%37. 1) Hmol ectrpm s/m’

s (390.9 £7.7) (568.5 *t34.8)
HmoL ectrpms/mz‘ s , ,
K 2 Ik
; ETR .
,AC DS
L ) mA C mDS L
AC I«
mAC DS Kk
M icrocy stismD S
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Fig 7 Light response arrves ofmutant and wild strains

2

Tab.2 Light response curve indexes of fourM icrocystis strains

Dt F hiomsosnce paran dom M. aeruginosa AC M. aerugmnosa DS M icrocystis mAC M icrocy stis mDS
a 0. 175£0 007 0. 144 £0. 006 0. 218£0.006 0. 231 0. 002
Day3 ETR,, (MmoL ekctonsm?s s) 80. 200 87 66.70 1. 20 84.57£1.89 90. 43 £1. 82
I (MmoL ectipms/im?® s) 458.8114. 3 463 6 19. 5 387.9%18.3 390.9 £7. 7
a 0. 17310 006 0. 172 £0. 008 0. 228 £0.002 0. 232 £0. 002
Day9 ETR,, (MmoL ekctonsim?s s) 81.23%1. 68 88.67 £3. 51 98. 37%4.51 97. 13 £2. 44
I (Mmool ectipms/m?e s) 468. 8£8 21 517213.7 430.7£17.5 418.5+8. 6
a 0.177£0 009 0. 174 £0. 005 0. 233£0.002 0. 231 £0. 004
Day 15 ETR,, (MmoL ekctonsim?s s) 87.27%1. 70 84.47 X0. 15 103. 63£5.79 106.91 £2. 02
I (Mmool ectipms/m?e s) 492.4£30. 6 485 93 *1. 25 444.1£21.3 463.2£12.9
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M. aeruginosa AC M. aeruginosa DS M icrocystis mAC M icrocy stis mDS
D ate F lnorescence paran eters
a 0. 179£0 021 0. 178 £0. 007 0. 232£0.008 0. 231 0. 002
Day 21 ETR,, (PmoL ekctonsm?s s) 84. 6318 74 82.57 3. 78 96. 30%+5.28 101.43 £5. 25
L (HmoL ecupms/® ) 473.8%14. 5 464 0 18. 6 415.4%37.6 439.2124. 5
a 0. 174%0 005 0. 181 0. 018 0. 230%0.003 0. 233 0. 005
Day 27 ETR,,,(MmoL ekctons/n?e s) 90. 1014 24 93.10 X0. 57 107. 40t4. 61 103.27 *4. 47
I (Pm oL ectrpms/mz‘ s) 517.1£7 8 536 7166 467. 7£23.0 442.7 124. 4
a 0. 1520 002 0. 149 %0. 004 0. 229%0. 002 0. 235 0. 003
Day 33 ETR,,,(MmoL ekctons/m?e s) 93. 8714 71 91.00 2. 15 120. 03£6.99 133.53 19. 01
I (UmoL. ectipms/in?e s) 619. 0£37. 1 6111325 524.4%24.5 568.5 £34. 8
2.8 (IK) DNA,
CPC/Chh HPLC M. aeruginosa
8 s AC DS PCC7820 MC-LR,
C-PC /Chh
(P < 0.0001), C-PC/Chk ,
, " HPLC EL KA
C-PC
165-23S IT'S 16S 1DNA
650
2
600 Y=277.3+44 6*X
00+ R=0.9683 [24 25]
0 SD=14.79 Janse et al. 165-23S 'S
£ 5504  P<0.0001 DGGE( )
g
3 5004 ’
3 ITS
g 450 rs
400 ’
l? -I‘ 8 6 8
C-PC/Chla ’
Ir's
8 (K) C-PC/Chk
Fig 8 The relhtionship bew een K and C-PC/Chle of ourM icrocysiis strains 3.2
3
2
[26]
31
[27]
Rud;j
1
etal.'" 16S DNA V6 VI V8 ,
CC/CG gvpAC R P lank-
. [28]
CH /CI tothrix sp. ;
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Mlouka et al.'™ M. aeruginosa Clayton[m
PCC7806 gup M. aeruginosa ,
(400— 550 mm)
- . 30 — 0% a
137 Schatz et al. (ol
, , PCR
mcyB  mceyD
, Chl, :
2—3 ,
B D) b "
PST™  Sednak e
[35]
B al.
G-PC ( Chh )
C-PC
) C-PC
I
33 CPC/Chh
, 25— 30 Mmol. ectipms/m’*
s (200—
,M icrocystis mDS M . aerugino- 500 Ymol, ectrpms/mz‘ s),
saDS 300 ,  Microcystis mAC M. aerugé , C-PC
nosa AC
(P> ,
0. 05),
’ , C-PC
8 )
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COMPARISON BETW EEN THE TOXICM ICROCYTIS SPECIES AND NON-TOXIC
M ICROCYSTIS SPECIES ORIGINATED FROM THE COCULTURE OF M ICROCYSTIS
AND POTERIOOCHROM OAS SP.

OU Dan-Yun '’, LIU Mei', GAN NanQ n' and SONG L+Rong '
(1 State key Laboratory ¢ Freshwater Ecology and Biotechnolbgy, Institute of H ydrobiolgy, Chinese Acadeny of Sciences Wuhan 430072
2 Wuhan Brandy, Graduate School of the ChineseA aademy of Sciences Wuhan 430072 )

Abstract Predaton of Poterioochran onas sp on prey M icrocystis is nomally a one way pocess 1 e, prey cells were
continuously ingested and gradually disappeared H owever it was not alvays the sane O ccasionally a patch of bhe-
green colored cells may re-appear fran the botiam of the auliure flask and gradually proliferated Based on th 8 phename-
non experinentswere desgned by using hree strains oM icrocy stis M. aerug nosa AC, DS and PCC 7820-as prey organ-
isms co-culured with predator Poterioochran onas sp, respectvely. A fier one or womonths evenually “ transfom ed”
M iwrocystis populatbnsw ere obtaned separately fron each of co-cultured treatment Nest PCR and 16S DNA analysis
identified these transfomed cells to beM icocystis sp. Furthemore it was astonish ngly found that these three trans-
fomed M icrocystis populations had lost he m icrocystim-poducing aility,. The result strongly suggested that P oterioo-
chromonas sp  played an m portant role n transfom ng the toxicity ofM icrocy stis during predating process
Transfom ed non-toxicM icrocystis had higher value of carote noids/chlorophyll ratio but lower valie of ¢yanophycin/
chlowophy Il ratio can pared w ith original toxic strans Light response aiwves indicated hat he PS@® quanum yield and
photosynthetic activity of these non-tox t strans were higher than that of original toxic strais m oreover non-toxic strains
achieved the maxmun photosynthetic actwity at bw er light ntensity than that of toxic strans Thism ight explain why the

non-tox ic transfom ed strans ougrew the toxicwil strans nM icrocystis and Poteroochran onas co-ailture
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