

DOI: 10.3724/SP.J.1035.2010.00029

虎纹蛙消化道肥大细胞类胰蛋白酶免疫组化研究

林 旋 王寿昆 陈梅芳 林树根 黄玉章

(福建农林大学动物科学学院, 福州 350002)

摘要: 研究采用小鼠抗人肥大细胞类胰蛋白酶单克隆抗体 AA1, 应用 ElivisionTMplus 免疫组化染色法对虎纹蛙(*Rana tigrina rugulosa*)消化道组织中类胰蛋白酶阳性肥大细胞存在的可能性进行研究。研究发现单克隆抗体 AA1 可与中性缓冲福马林液固定的虎纹蛙组织的肥大细胞获得良好的交叉反应, 类胰蛋白酶阳性细胞胞浆染成棕黄色, 证实虎纹蛙肥大细胞胞浆颗粒中也存在类胰蛋白酶。虎纹蛙组织中 AA1 免疫染色阳性细胞的分布, 与 AB/SO 和改良甲苯胺兰染色阳性细胞的分布存在较大的差异: 虎纹蛙类胰蛋白酶阳性细胞数量很少, 且阳性反应比人胃癌间质肥大细胞弱, 主要见于黏膜型肥大细胞(MMC)分布区域, 如消化道黏膜上皮下方和固有层, 少量分布于肠绒毛基底部及食管腺和胃腺周围。而在结缔组织型肥大细胞(CTMC)分布区域, 如消化道黏膜下层结缔组织中却未见类胰蛋白酶阳性细胞。AB/SO 和改良甲苯胺兰染色阳性细胞数量多, 广泛分布于消化道黏膜固有层、黏膜下层、腺体之间、肌间及外膜结缔组织, 说明并不是所有的虎纹蛙肥大细胞都含有类胰蛋白酶。很有可能是虎纹蛙 MMC 中含有类胰蛋白酶, 而 CTMC 中不含类胰蛋白酶。虎纹蛙类胰蛋白酶阳性细胞数量很少, 且阳性反应比人胃癌间质肥大细胞弱, 说明虎纹蛙肥大细胞胞浆颗粒类胰蛋白酶含量较少, 虎纹蛙属于低等脊椎动物, 可能与生物进化水平较低有关, 有待进一步研究。

关键词: 虎纹蛙; 肥大细胞; 类胰蛋白酶; 免疫组化

中图分类号: Q954.6 文献标识码: A 文章编号: 1000-3207(2010)01-0029-06

类胰蛋白酶(Tryptase)存在于所有哺乳动物肥大细胞的分泌颗粒中, 是肥大细胞介质中一种重要的中性蛋白酶。它与胰蛋白酶相似, 属丝氨酸蛋白酶家族, 由四个非共价结合的亚单位组成四聚体结构^[1—3], Glenner 和 Cohen 利用胰蛋白酶对肥大细胞进行酶组织化学染色时发现肥大细胞能够被染色, 说明肥大细胞中存在胰蛋白酶样活性物质^[4]。Schwartz, *et al.* 在对这些物质进行纯化后发现这些物质 90%以上具有胰蛋白酶样活性, 故命名为类胰蛋白酶。该酶在肥大细胞中的贮存和表达具有高度选择性, 不能在其他类型细胞中被检出, 故类胰蛋白酶成为鉴定人肥大细胞的特异性标志^[3—5]。于是小鼠抗人肥大细胞类胰蛋白酶单克隆抗体及其免疫组化技术, 及鉴定人肥大细胞类胰蛋白酶的酶组织化学技术应运而生^[6—9]。

Walls, *et al.* 制备出小鼠抗人肥大细胞类胰蛋白酶单克隆抗体 AA1 并采用间接免疫过氧化物酶技术鉴定人肥大细胞^[8]。许乐仁等采用鉴定人肥大细胞的一种酶组织化学技术也发现猪、牛、绵羊、犬、猫和大鼠等多种动物的肥大细胞中存在类胰蛋白酶^[10—13], 近来杨冬梅、许乐仁等采用小鼠抗人类肥大细胞类胰蛋白酶单克隆抗体 AA1 通过间接免疫过氧化物酶技术, 首次证实了牛蛙肥大细胞胞浆中类胰蛋白酶的存在^[14]。这些工作说明了鉴定人肥大细胞的一些组织化学技术也适用于多种动物肥大细胞的研究, 且类胰蛋白酶也是多种动物肥大细胞的特异性标志^[3]。

对蛙和蟾蜍等两栖类动物的肥大细胞已有所研究, 国内外的一些研究者采用不同的组织化学技术, 在多种两栖动物的不同组织中鉴定出肥大细

收稿日期: 2008-10-07, 修订日期: 2009-04-12

基金项目: 福建省自然科学基金项目(2008J0249); 福建农林大学青年教师基金(07B13)资助

作者简介: 林旋(1979—), 男, 汉族, 福建龙海人; 硕士; 研究方向为水产动物疾病学。E-mail: linkaixuan79@hotmail.com

通讯作者: 王寿昆(1956—), 男, 教授, E-mail: wsk138@163.com

胞^[15—20]。但迄今为止, 尚未见有虎纹蛙的肥大细胞是否含有中性蛋白酶的研究报道。本实验采用小鼠抗人肥大细胞类胰蛋白酶单克隆抗体 AA1, 应用 ElivisionTMplus 免疫组化染色法对虎纹蛙(*Rana tigrina rugulosa*)消化道组织中类胰蛋白酶阳性肥大细胞存在的可能性进行研究。为证实该技术的可靠性, 同时使用人胃癌组织作为阳性对照, 并与肥大细胞的阿利新蓝-藏红 O 复染法和改良甲苯胺蓝染色法进行了比较。

1 材料与方法

1.1 材料

市售健康虎纹蛙 150—200 g 4 头。剖开腹腔, 取食管、胃贲门、胃体、胃幽门、小肠(十二指肠、空肠、回肠)于 10% 中性缓冲福马林(10%NBF)和 Carnoy 分别固定, 常规脱水、透明, 石蜡包埋, 切片厚度 6 μm 。

1.2 主要试剂

鼠抗人肥大细胞类胰蛋白酶单克隆抗体 AA1, 即用型非生物素免疫组化 ElivisionTMplus 检测试剂盒, Trypsin 胰蛋白酶试剂盒, 多聚-L-赖氨酸, DAB 显示剂, 人胃癌组织阳性对照片, 均购自福州迈新生物技术有限公司。

1.3 ElivisionTMplus 免疫组化染色步骤

(1)石蜡切片脱蜡和水化后, 用 PBS(pH7.4)冲洗 3 次, 各 3min; (2)抗原修复: 胰蛋白酶 37℃恒温箱孵育 15—20min, PBS 洗 3 次, 各 3min; (3)除去 PBS 液, 每张切片加一滴或 50 μL 类胰蛋白酶单克隆抗体 AA1, 4℃过夜; (4)PBS 冲洗 3 次, 各 3min; (5)除去 PBS 液, 每张切片加 1 滴或 50 μL 聚合物增强剂, 室温下孵育 20min; (6)PBS 冲洗 3 次, 各 3min; (7)除去 PBS 液, 每张切片加 1 滴或 50 μL 酶标抗鼠/兔聚合物, 室温下孵育 30min; (8)PBS 冲洗 3 次, 各 3min; (9)除去 PBS 液, 每张切片加 2 滴或 100 μL 新鲜配制的 DAB 显示液, 显微镜下观察 3—10min, 阳性显示为棕色; (10)蒸馏水或自来水冲洗, 苏木精复染数秒, 自来水冲洗, PBS 冲洗返蓝。阴性对照片不加一抗, 其他步骤同。

1.4 常规组织化学染色

阿利新蓝-藏红 O 复染法(AB/SO)参考文献[21]的方法进行; 改良甲苯胺蓝染色法参考文献[22]的方法进行。

2 结 果

2.1 免疫组织化学染色

NBF 固定的虎纹蛙食管、胃、肠组织中, 类胰蛋白酶阳性细胞胞浆染成棕黄色, 数量很少, 分布于食管黏膜固有层(图版 I -1)、胃黏膜固有层和腺体之间(图版 I -2—4)、小肠上皮细胞基部和黏膜固有层(图版 I -5—8), 少量见于肠绒毛基部。细胞形态圆形、椭圆形及不规则形。胃癌组织镜检时, 在肿瘤间质中均能观察到许多胞浆为棕黄色的细胞, 即类胰蛋白酶阳性细胞(图版 I -9)。阴性对照组切片胞浆无着色。

2.2 常规组织化学染色

应用 Carnoy 固定, AB/SO 着染的肥大细胞胞质颗粒呈深蓝色, 胞核呈淡褐色(图版 I -10); 改良甲苯胺蓝染色法着染的肥大细胞胞质颗粒呈紫红色, 胞核呈紫蓝色(图版 I -11、12)。肥大细胞数量多, 分布各段消化道黏膜上皮下, 黏膜固有层和黏膜下层结缔组织中(图版 I -10、11), 肌层细胞之间和外膜结缔组织(图版 I -10)。虎纹蛙肥大细胞形态呈圆形、椭圆形。

3 讨 论

类胰蛋白酶是肥大细胞中的一种重要的生物活性介质^[1—3]。因为这一中性蛋白酶仅见于肥大细胞的胞浆颗粒中, 因而成为鉴定人肥大细胞重要的特异性标志^[5—9]。事实上, 在所有被检的由低等到高等的哺乳动物肥大细胞中均发现有类胰蛋白酶的存在^[23], 许乐仁等采用小鼠抗人肥大细胞类胰蛋白酶单克隆抗体 AA1 及其免疫组化技术或酶组化技术也证实多种动物肥大细胞中类胰蛋白酶的存在^[10,11]; 近来, 杨冬梅等采用同样方法, 首次证实牛蛙肥大细胞中类胰蛋白酶的存在^[14]。本实验证实虎纹蛙肥大细胞中有类胰蛋白酶的存在。可见, 尽管两栖动物与哺乳动物之间在生物进化水平上存在着很大的距离, 但它们的肥大细胞也具有哺乳动物肥大细胞的某些重要的共同生物化学性质。蛙科动物肥大细胞胞浆颗粒中具有组织胺等生化介质^[15]。本研究采用小鼠抗人肥大细胞类胰蛋白酶单克隆抗体 AA1, 应用 ElivisionTMplus 免疫组化染色技术, 发现单克隆抗体 AA1 可与中性缓冲福马林液固定的虎纹蛙组织的肥大细胞获得良好的交叉反应, 证实虎纹蛙肥大细胞胞浆颗粒中也存在类胰蛋白酶。可见, 类胰蛋白酶

白酶同样可以作为鉴定蛙肥大细胞的特异性标志。

近50年来, 肥大细胞异质性的研究已成为肥大细胞研究的焦点^[3,24]。根据其组织化学、形态学及其分布的明显差异, 哺乳动物的肥大细胞可分为黏膜肥大细胞(Mucosal mast cells, MMC)与结缔组织肥大细胞(Connective tissue mast cells, CTMC)。前者主要分布在消化道黏膜固有层及肺脏, 而后者广泛分布在消化道黏膜下及其他部位的结缔组织中^[24]。实验发现, 虎纹蛙组织中AA1免疫染色阳性细胞的分布, 与AB/SO和改良甲苯胺兰染色阳性细胞的分布存在较大的差异: 虎纹蛙类胰蛋白酶阳性细胞数量很少, 且阳性反应比人胃癌间质肥大细胞弱, 主要见于黏膜型肥大细胞(MMC)分布区域, 如消化道黏膜上皮下方和固有层, 少量分布于肠绒毛基底部及食管腺和胃腺周围。而在结缔组织型肥大细胞(CTMC)分布区域, 如消化道黏膜下层结缔组织中却未见类胰蛋白酶阳性细胞。AB/SO和改良甲苯胺兰染色阳性细胞数量多, 广泛分布于消化道黏膜固有层、黏膜下层、腺体之间、肌间及外膜结缔组织, 与杨冬梅对牛蛙研究的结果基本一致^[14]。这说明并不是所有的虎纹蛙肥大细胞都含有类胰蛋白酶。很有可能是, 虎纹蛙MMC中含有类胰蛋白酶, 而CTMC中不含类胰蛋白酶。虎纹蛙类胰蛋白酶阳性细胞数量很少, 且阳性反应比人胃癌间质肥大细胞弱, 说明虎纹蛙肥大细胞胞浆颗粒类胰蛋白酶含量较少, 虎纹蛙属于低等脊椎动物, 可能与生物进化水平较低有关, 有待进一步研究。

人类的肥大细胞则根据其胞浆颗粒内中性蛋白酶组分的差异, 被区分为仅含类胰蛋白酶的T肥大细胞(MC), 同时含类胰蛋白酶及类糜蛋白酶(Chymase)的TC肥大细胞(MCrc)以及仅含类糜蛋白酶的C肥大细胞(MC)三个类型^[3,24]。类胰蛋白酶和类糜蛋白酶都是肥大细胞的特异性标志酶, 已有学者利用类胰蛋白酶和类糜蛋白酶的双重免疫标记技术来区分肥大细胞的不同亚型^[25]。采用小鼠抗人肥大细胞类糜蛋白酶单克隆抗体做进一步的免疫组化染色, 检测虎纹蛙的肥大细胞是否也如人类那样存在MC^{TC}或MC^C亚群。

参考文献:

- [1] Hallgren J, Pejler. Biology of mast cell tryptase, an inflammatory mediator [J]. *FEBC J*, 2006, **27**(9): 1871—1895
- [2] Fiorucci L, Ascoli F. Mast cell tryptase, a still enigmatic enzyme [J]. *Cell Mol Life Sci*, 2004, **61**(11): 1278—1295
- [3] Xu L R, Jiang P. Neutral proteases of mast cells [J]. *Progress of Anatomical Sciences*, 2002, **8**(3): 249—253 [许乐仁, 江萍. 肥大细胞的中性蛋白酶. *解剖科学进展*, 2002, **8**(3): 249—253]
- [4] Glenner G C, Cohen L A. Histochemical demonstration of species-special tryptase-like enzyme in mast cells [J]. *J. Nature (London)*, 1960, **185**: 846—852
- [5] Schwartz L B, Lewis L A, Seldin D. Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells [J]. *J Immunol*, 1981, **126**(4): 1290—1294
- [6] Schwartz L B. Monoclonal antibodies against human mast cell tryptase demonstrate shared antigenic sites on subunits of tryptase and selective location of the enzyme to mast cells [J]. *Immunol*, 1985, **134**(1): 526—531
- [7] Craig S S, Deblois B, Schwartz L B. Mast cells in human Keloid, small intestine and lung by an immunoperoxidase technique using murine monoclonal antibody against tryptase [J]. *Amer J Pathol*, 1986, **124**(4): 427—435
- [8] Walls A F, Jones D B, Williams M K, et al. Immunohistochemical identification of mast cells in formaldehyde-fixed tissue using monoclonal antibodies specific for tryptase [J]. *J Pathol*, 1990, **162**: 119—126
- [9] Harvima I T, Naukkarinen A, Harvima R J, et al. Quantitative enzyme histochemical analysis of tryptase and chymase-containing mast cells in Psoriatic skin [J]. *Arch Dermatol Res*, 1990, **282**(2): 428—433.
- [10] Jiang P, Xu L R. Identification of tryptase in ovine mast cells [J]. *Acta Anatomica Sinica*, 1996, **27**: 92—94 [江萍, 许乐仁. 绵羊肥大细胞中性类胰蛋白酶的证实. *解剖学报*, 1996, **27**: 92—94]
- [11] Xu L R, Jiang P, Carr M M, et al. Identification of porcine and bovine mast cells by an indirect immunoperoxidase technique [J]. *Acta Zoologica Sinica*, 1997, **43**(3): 294—302
- [12] Xu L R. Identification of tryptase in feline and canine mast cells by using an enzyme-histochemical technique [J]. *Journal of Guizhou Agricultural University*, 1992, **11**: 29—32 [许乐仁. 应用酶组织化学技术证实猫、犬肥大细胞中类胰蛋白酶的存在. *贵州农学院学报*, 1992, **11**: 29—32]
- [13] Jiang P, Xu L R. Enzyme-histochemical analysis of tryptase-containing mast cells in six species of animals [J]. *Acta Veterinaria et Zootechnica Sinica*, 1997, **28**(5): 416—421 [江萍, 许乐仁. 六种动物含类胰蛋白酶肥大细胞的酶组化分析. *畜牧兽医学报*, 1997, **28**(5): 416—421]
- [14] Yang D M, Xu L R. Identification of tryptase in the mast cells of bullfrog (*Rana catesbeiana*) [J]. *Journal of Fisheries of China*, 2008, **32**(04): 572—577 [杨冬梅, 许乐仁. 牛蛙肥大细胞中类胰蛋白酶的证实. *水产学报*, 2008, **32**(04): 572—577]
- [15] Paccari G C, Paulis A D, Matteo D L, et al. In situ characterization of mast cells in the frog *Rana esculenta* [J]. *Tissue*

Res, 1998, **292**: 151—162

[16] Gonzalez Elorriaga M A, Canepa G. Suggestive evidences for microanatomical relationship between mast cells and nerve in the tongue of the toad *Bufo marinus* demonstrated by means of high resolution light microscopy [J]. *Acta Cient Venez*, 2002, **53**(4): 258—265

[17] Zhang S Q, Yu H C. A Study on skin mast cells morphology in bufonidae (*Bufo raddei*) and Bullfrog (*Rana catesbeiana*) [J]. *Journal of Ningxia University (Natural Science Edition)*, 2005, **26**(1): 40—42 [张书起, 于洪川. 中华大蟾蜍舌肥大细胞组化性质的研究. 农业科学研究, 2005, **26**(1): 40—42]

[18] Yang D M, Ou D Y, Xu L R. Progress on mast cell biology in amphibians [J]. *Progress in Veterinary Medicine*, 2005, **24**(8): 1—6 [杨冬梅, 欧德渊, 许乐仁. 两栖动物肥大细胞生物学研究进展. 动物医学进展, 2005, **24**(8): 1—6]

[19] Zhang W X, Zhao L Z, Zhao Y H, et al. The study on 5-hydroxytryptamine positive immunoreactive mast cells in the uterus of pregnant mice [J]. *Journal of Henan Normal University (Natural Science)*, 2005, **33**(4): 176—182 [张文学, 赵良真, 赵艳红, 等. 蟾蜍消化道肥大细胞的观察. 河南师范大学(自然科学版), 2005, **33**(4): 176—182]

[20] Xu L R, Yang D M, Ou D Y. Histochemistry and morphology of mast cells of bullfrog [J]. *Chinese Journal of Histochemistry and Cytochemistry*, 2007, **16**(6): 669—675 [许乐仁, 杨冬梅, 欧德渊. 牛蛙肥大细胞的组织化学与形态学. 中国组织化学与细胞化学杂志, 2007, **16**(6): 669—675]

[21] Xu L R, Carr M M, Bland A P, et al. Histochemistry and morphology of porcine mast cells [J]. *Histochem J*, 1993, **25**: 516—522

[22] Li F Y, Chen Y X, Wang Z X. Effect of three feed additives on number of mast cells in small intestine of broiler [J]. *Progress in Veterinary Medicine*, 2006, **27**(2): 65—68 [李芙蓉, 陈耀星, 王子旭. 三种饲料添加剂对肉鸡小肠肥大细胞数量分布的影响. 动物医学进展, 2006, **27**(2): 65—68]

[23] Stevens R. Human and mouse mast cell tryptase, in mast cells and basophils [M]. Edited by Marone G, et al. Academic Press, Harcourt Publishers. 2000, 235—249

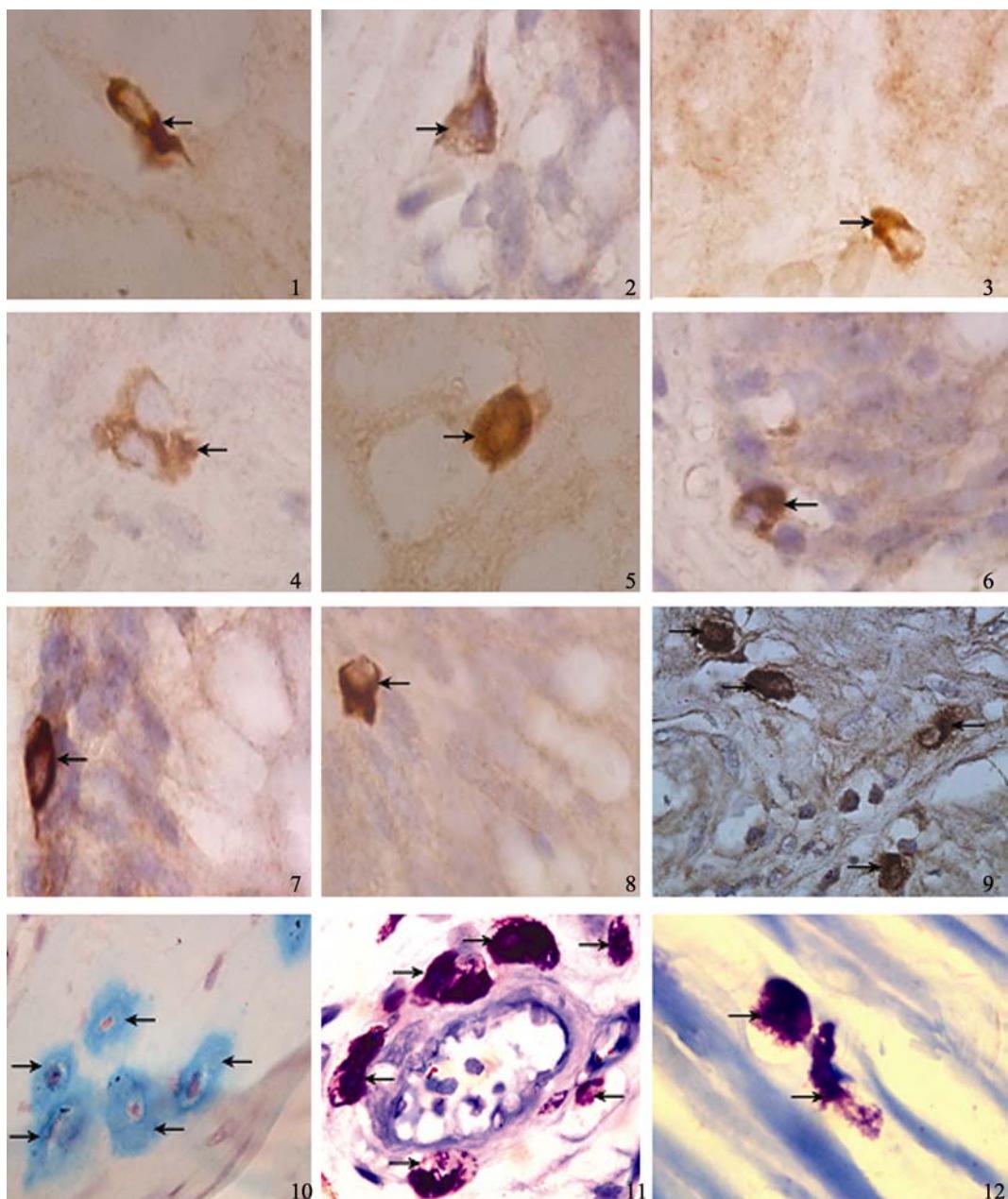
[24] Galli S L. New insight into “The riddle of the mast cells” micro environmental regulation of mast cell development and phenotypic heterogeneity [J]. *Lab Invest*, 1990, **60**: 146—157

[25] He S H, Li P, G B Mark, et al. Identification of mast cell subsets by double immune labeling technique [J]. *Chinese Journal of Pathology*, 2000, **29**(5): 383—384 [何韶衡, 李萍, G B Mark, 等. 应用双重免疫标记技术鉴定肥大细胞亚型. 中华病理学杂志, 2000, **29**(5): 383—384]

STUDY ON TRYPTASE IN THE MAST CELL IN THE DIGESTIVE TRACT OF INDIAN BULLFROG (*RANA TIGRINA RUGULOSA*) BY AN IMMUNOHISTOCHEMICAL METHOD

LIN Xuan, WANG Shou-Kun, CHEN Mei-Fang, LIN Shu-Gen and HUANG Yu-Zhang

(College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002)


Abstract: A murine monoclonal antibody (AA1) raised against human mast cell tryptase was used in this experiment to investigate the possibility existence of tryptase-positive mast cells of the digestive tract tissue which collected from Indian bullfrog (*Rana tigrina rugulosa*) by Elivision™ plus immunohistochemical techniques. To prove its reliability, Alcian blue-Safranin O staining and modified toluidine blue staining was compared with this method when gastric cancer tissue from an adult man was used as a positive control.

Four healthy Indian bullfrog weigh 150—200 g were used. After opening abdominal cavity, the esophagus, stomachus cardiacus, stomachus fundus, stomachus pylorus and small intestine (duodenum, jejunum and ileum) were fixed in the 10% neutral buffered formalin (10% NBF) and Carnoy solution respectively, dehydrated, transparentized, embedded and sliced into 6μm sections. Immunohistochemistry Kit, murine monoclonal antibody (AA1) raised against human mast cell tryptase, Elivision™ plus Polymer HRP (Mouse/Rabbit) IHC Kit, Trypsin Kit, Poly-L-lysine, DAB Kit, and gastric cancer tissue from an adult man used as a positive control were bought from Fuzhou Maxim Biotech Inc. The experiment was conducted as following: (1) Washing the slices by PBS (pH7.4) (3 × 3min) after dewaxing and hydrating. (2) Hatching trypsinase 15—20min in incubator at 37°C for repairing antigen. Rinsing in PBS (3 × 3min). (3) Sections were incubated overnight at 4°C with monoclonal antibody (AA1). (4) Rinsing in PBS (3 × 3min). (5) Removing PBS and adding 50 μL polymer intensifier to each slice, incubating at room temperature for 30min. (6) Rinsing in PBS (3 × 3min).

(7) Removing PBS and adding 50 μ L enzyme-mark polymer against murine, hatching at room temperature for 30min.
(8) Rinsing in PBS (3 \times 3min). (9) Removing PBS and dropping 100 μ L fresh DAB Kit, studying it under a microscope for 3-10min, the positive showed brown. (10) Finishing coloration with the distilled water. Hematoxylin stained. Dehydration, clearing, and mounting with neutral gums. Group was carried out with the same steps murine monoclonal antibody (AA1).

The research demonstrated that the Indian bullfrog mast cells contained tryptase in their cytoplasm granules, and there was an excellent cross-reaction between monoclonal antibody AA1 and mast cells obtained from the Indian bullfrog tissues fixed by 10% neutral buffered formalin. The cytoplasm of tryptase-positive mast cells was dyed brown yellow. The research found that the distribution of positive cells of Indian bullfrog tissue dyed by AA1 were different from ones of Alcian blue-Safranin O and the modified toluidine blue staining. In Indian bullfrog, the number of tryptase-positive mast cells was small, and the positive reaction of them was weaker than gastric carcinoma interstitium in human. The tryptase-positive mast cells were mostly distributed in the base of enteron mucosa epithelium, lamina propria, base of intestinal villus, oesophagus gland and stomachus gland. The distributions of them were similar with mucosal mast cell (MMC). While the tryptase-positive mast cells did not exist in the distributional range of connective tissue mast cell (CTMC) such as digestive tract mucosa connective tissues. A number of mast cells dyed by the modified toluidine blue staining and Alcian blue-Safranin O staining were mostly distributed in the digestive tract mucosa lamina propria, submucosa, gland interstitium, muscular layer and ectoblast connective tissues. It showed that not all Indian bullfrog mast cells had tryptase. Maybe the MMC of Indian bullfrog had tryptase but the CTMC did not. The number of tryptase-positive mast cells of Indian bullfrog was small and the positive reaction of tryptase-positive mast cells was weaker than gastric carcinoma interstitium of human. The study showed that the tryptase content in mast cells cytoplasm granules of Indian bullfrog was low. Indian bullfrog belonged to lower vertebrates, and these phenomenons possibly correlated with lower level of biological evolution. These problems remained to be further researched.

Key words: Indian bullfrog (*Rana tigrina rugulosa*); Mast cell; Tryptase; Immunohistochemistry

图版 I Plate I

1. 食管固有膜肥大细胞免疫组化 $\times 1000$; 2. 胃贲门部固有膜肥大细胞 $\times 1000$; 3. 胃体部固有膜肥大细胞免疫组化 $\times 1000$; 4. 胃幽门部固有膜肥大细胞 $\times 1000$; 5. 十二指肠固有膜肥大细胞免疫组化 $\times 1000$; 6. 空肠固有膜肥大细胞免疫组化 $\times 1000$; 7. 回肠固有膜肥大细胞免疫组化 $\times 1000$; 8. 直肠固有膜肥大细胞免疫组化 $\times 1000$; 9. 人胃癌间质肥大细胞免疫组化 $\times 1000$; 10. 十二指肠黏膜下层肥大细胞(AB/SO 染色) $\times 1000$; 11. 食管固有膜肥大细胞(改良甲苯胺蓝染色) $\times 1000$; 12. 胃贲门部肌层肥大细胞(改良甲苯胺蓝染色) $\times 1000$

1. The immunohistochemistry of mast cell in the esophagus lamina propria $\times 1000$; 2. The immunohistochemistry of mast cell in the stomachus cardiacus lamina propria $\times 1000$; 3. The immunohistochemistry of mast cell in the stomachus fundus lamina propria $\times 1000$; 4. The immunohistochemistry of mast cell in the stomachus Pylorus lamina propria $\times 1000$; 5. The immunohistochemistry of mast cell in the interstitium duodenum lamina propria $\times 1000$; 6. The immunohistochemistry of mast cell in the Interstitium jejunum lamina propria $\times 1000$; 7. The immunohistochemistry of mast cell in the Interstitium ileum lamina propria $\times 1000$; 8. The immunohistochemistry of mast cell in the la Interstitium rectum lamina propria $\times 1000$; 9. The immunohistochemistry of mast cell in gastric carcinoma interstitium of human $\times 1000$; 10. Mast cell in the interstitium duodenum submucosa (Alcian blue Safranin O staining) $\times 1000$; 11. Mast cell in the esophagus lamina propria (The modified toluidine blue staining) $\times 1000$; 12. Mast cell in the stomachus cardiacus tunica muscularis (The modified toluidine blue staining) $\times 1000$