

DOI: 10.3724/SP.J.1035.2010.00905

不同游泳速度条件下瓦氏黄颡幼鱼的有氧和无氧代谢反应

朱晏萍 曹振东 付世建

(重庆师范大学进化生理与行为学实验室, 重庆市动物生物学重点实验室, 重庆 400047)

摘要: 在 $(25\pm1)^\circ\text{C}$ 的条件下, 测定瓦氏黄颡(*Pelteobagrus vachelli* Richardson)幼鱼[体重 $(4.34\pm0.13)\text{ g}$]的临界游泳速度(U_{crit}), 然后分别以临界游泳速度的不同百分比(20、40、60、80、100% U_{crit})将实验鱼分为5个速度处理组, 另外设置静止对照组和高速力竭对照组。处理组实验鱼在不同游泳速度下分别游泳20min, 在此过程中测定并计算运动代谢率(Activity metabolic rate, AMR), 随后测定肌肉、血液和肝脏中的乳酸、糖原和葡萄糖含量。结果显示: 实验鱼的绝对临界游泳速度为 $(48.28\pm1.02)\text{ cm/s}$, 相对临界游泳速度为 $(6.78\pm0.16)\text{ BL/s}$; 随着游泳速度的提高 AMR 显著增加 ($P < 0.05$); 100% U_{crit} 时肌乳酸和血乳酸含量显著高于 80% U_{crit} 的水平($P < 0.05$), 而肝乳酸含量却未见显著性变化($P > 0.05$); 100% U_{crit} 时肝糖原含量显著低于 40% U_{crit} 的水平($P < 0.05$), 而肌糖原含量却没有显著差异($P > 0.05$)。经计算瓦氏黄颡幼鱼到达临界游泳速度时的无氧代谢功率比例仅为 11.0%, 表明其游泳运动主要以有氧代谢供能; 实验鱼的无氧代谢大约在 80% U_{crit} 才开始启动, 与其他鱼类比较启动时间较晚, 说明其游泳运动对无氧代谢的依赖程度较低。研究提示瓦氏黄颡幼鱼是一种有氧运动能力较强的鱼类, 这一能量代谢特征可能与提高其生存适合度有关。

关键词: 临界游泳速度; 瓦氏黄颡鱼; 耗氧率; 乳酸; 糖原

中图分类号: Q541.4 文献标识码: A 文章编号: 1000-3207(2010)05-0905-08

鱼类作为水中的脊椎动物不仅种类繁多且生活史复杂, 不同生命活动所采取的运动方式也不尽相同^[1,2]。依据对氧的需求可以将鱼类运动划分为无氧运动和有氧运动两种类型^[1]。无氧运动是指鱼类以无氧代谢供能、运动剧烈且时间很短的运动方式, 这种方式会导致糖原的迅速消耗和乳酸的大量累积^[3]。因此相关研究已将肌乳酸的水平作为评估无氧代谢能力的一个重要指标^[4]; 而力竭性运动后的过量耗氧(Excess post-exercise oxygen consumption, EPOC)则是另一个常用的生理指标, 它与鱼类最大无氧代谢能力密切相关^[4]。有氧运动是指以有氧代谢供能、持续时间较长的运动方式, 最大持续有氧运动速度被称为临界游泳速度(Critical swimming speed, U_{crit}), 通常将临界游泳速度条件下的耗氧率作为评估鱼类最大有氧代谢能力的指标^[5,6]。然而鱼类在接近临界游泳速度的过程中存在一定程度的无氧代谢供能现

象^[6-8], 但由于鱼类的生活史对策和环境类型存在差异, 无氧代谢供能的比例也不尽相同^[9]; 因此, 近年来学者们对此开始较多关注^[10,11]。

瓦氏黄颡鱼(*Pelteobagrus vachelli* Richardson)是一种广泛分布于长江、珠江等水系的经济鱼类^[12]。近年来以黄颡鱼为对象的研究涉足多个领域^[13,14], 我们在相关研究中发现瓦氏黄颡幼鱼的临界游泳速度较高^[15]。那么在接近临界游泳速度的过程中它是否存在无氧代谢, 无氧代谢占总能量代谢的比例如何, 以及无氧代谢的启动与游泳速度之间存在怎样的关联是一些值得关注的问题。为此, 本研究以瓦氏黄颡幼鱼为对象, 考察实验鱼的临界游泳速度并测定不同速度下的耗氧率及其肌肉、血液和肝脏中的乳酸、糖原和葡萄糖含量; 揭示不同速度条件下的有氧和无氧代谢反应, 旨在为鱼类运动生理的相关研究提供基础资料。

收稿日期: 2009-06-11; 修订日期: 2010-01-19

基金项目: 国家自然科学基金(No.30700087); 重庆市自然科学基金(2010BB1089)资助

作者简介: 朱晏萍(1982—), 女, 汉族, 山东曲阜人; 硕士研究生; 主要研究方向为鱼类生理生态。E-mail: zyping88888@126.com

通讯作者: 曹振东, E-mail: z.d.cao@hotmail.com

1 材料与方法

1.1 实验鱼的来源与驯化

将 2008 年 11 月在重庆合川区水产学校实习渔场购买的瓦氏黄颡幼鱼, 放入重庆师范大学进化生理与行为学实验室自净化循环控温水槽(1.2 m×0.55 m×0.55 m, 实际水量 250 L, 专利号: 200520010485.9)驯养 1 个月。然后选取大小相近[体重(4.34±0.13) g; 体长(6.89±0.06) cm], 身体健康的实验鱼 96 尾, 分别放入 2 个水槽的 24 个养殖单元[每个水槽内放置 12 个以丝绢(60 目)为底的圆桶状(φ20 cm)养殖单元, 各单元分别供水]中驯化 2 周。每天以新鲜鲢鱼肉块作饵料饱足投喂一次, 投喂前清除桶内的残饵和粪便。实验驯养及驯化期间的水温均为(25±1)℃, 以充气泵不断向水体充入空气使其溶氧水平 7 mg/L, 日换水量约为水槽总水体的 10%; 光照为 14L:10D。

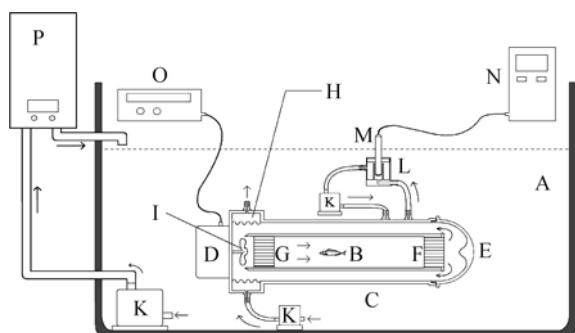


图 1 鱼类游泳耗氧测定仪结构示意图

Fig. 1 The structure of fish swimming-Mo₂ determining device
 A. 水浴水槽; B. 游泳管; C. 回流套管; D. 调速电机; E. 密封盖; F,G. 多孔导流板; H. 热交换器; I. 螺旋桨; K. 水泵; L. 测量杯; M. 氧探头; N. 溶氧仪; O. 变频电源; P. 水处理及控温装置
 A.; Bathing tank; B. Swimming tube; C. circulating cannula; D. electromotor; E. sealing cover; F,G. water-distributing units (pipes); H. heat exchanger; I. propeller; K. pump; L. sampling bottle; M. Oxygen probe; N. Oxygen meter; O. transducer power; P. Water-Processing and temperature-controlling system

1.2 实验方案

首先随机选取 8 尾实验鱼进行临界游泳速度(U_{crit})的测定; 分别以临界游泳速度平均值的不同百分比(20%、40%、60%、80%、100% U_{crit})设定 5 个不同游泳速度的处理组, 另设静止对照组和高速(130% U_{crit})力竭对照组。处理组(每组 6 尾)实验鱼分别在 5 个不同速度下连续游泳 20min, 随后取样测定肌肉、血液和肝脏组织中乳酸、糖原和葡萄糖含量; 另外分别对静止对照组和高速力竭对照组取样

并测定上述生化指标。再将 36 尾实验鱼分为 6 组, 分别测定并计算 5 个不同速度及静止条件下的代谢率。实验测定前均禁食 2d, 水温控制在(25±1)℃。

1.3 测定方法及主要参数

临界游泳速度的测定 临界游泳速度采用本实验室研制的压差式鱼类游泳能力测定装置进行测定^[16](专利号:200520010485.4)。在临界游泳速度的测定过程中, 首先将单尾实验鱼放入游泳管中适应 1h 以消除转移胁迫的影响^[17], 适应期间管内流速约为 7.0 cm/s, 随后根据相关文献^[17, 18]和预备实验结果, 在 5min 之内将流速提高至 24 cm/s (50% U_{crit}), 持续游泳 20min 后速度增加 7.0 cm/s, 依此程序直至最后实验鱼达到运动力竭状态^[19]。然后取出实验鱼称量体重(g)并测量体长(cm)。临界游泳速度计算公式:

$$U_{crit} = U + (t/T)\Delta U \quad (1)$$

式中 U_{crit} 为临界游泳速度, U 是能够完成设定时间(20min)的最大游泳速度, ΔU 是速度增量(7.0 cm/s), T 是设定的持续游泳历时($T=20$ min), t 是未能完成设定历时的实际持续游泳时间($t<20$ min)。如果上式中 U 、 ΔU 的量纲为 cm/s, U_{crit} 则表示绝对临界游泳速度(Absolute critical swimming speed); 如果上式中 U 、 ΔU 的量纲为 BL/s, U_{crit} 则表示相对临界游泳速度(Relative critical swimming speed)。因为本研究实验鱼身体的横截面积并未超过游泳管截面积的 10%, 所以 U_{crit} 无需校正^[20]。

不同速度耗氧率的测定 采用本实验室研制的鱼类游泳耗氧测定仪对实验鱼的游泳能力及其耗氧率进行测定。该仪器的结构(图 1), 其工作原理相关文献已有介绍^[21]。通过游泳管内黑色凝胶颗粒运动轨迹分析并标定游泳管内的水流速度并建立速度与螺旋桨转速的关系, 以实现水流速度的调节。

将单尾实验鱼放入游泳管中在微水流(约 7.0 cm/s)下适应 1h, 以消除转移过程中的胁迫影响; 然后各组实验鱼分别在不同速度(20%、40%、60%、80%、100% U_{crit})下持续游泳 20min (其中在 100% U_{crit} 下有 2 尾实验鱼连续游泳<20min); 随实验鱼的不断运动密闭水体的溶氧水平不断下降, 每 5min 记录一次溶氧值; 建立溶氧水平随时间变化的直线拟合方程并以其斜率(Slope, S_t)的绝对值计算每尾鱼每分钟的表观耗氧量, 再通过上述方法(无实验鱼)得到细菌耗氧量。实验结束后将实验鱼取出称重并测量体长。实验期间鱼类游泳耗氧测定仪内水体的

溶氧水平不低于 85%饱和度。游泳运动代谢率 (Activity metabolic rate, *AMR*)的计算公式:

$$AMR = (S_t - S_b) \times 60 \times Vol / m^{0.75} \quad (2)$$

式中 *AMR* 为标准体重的运动代谢率($\text{mg O}_2/\text{h}\cdot\text{kg}$); S_t 为实验鱼游泳时溶氧值随时间变化斜率的绝对值(表观耗氧量); S_b 是无实验鱼存在的溶氧值随时间变化斜率的绝对值(细菌耗氧量), 60 为时间常数(min); *Vol* 是扣除实验鱼体积后的仪器水体系统总体积(L); *m* 为鱼体体重(kg)。为消除体重的影响并将其标准化为 1 kg, 0.75 为体重指数^[12]。

静止耗氧率的测定 采用实验室自行设计的流水式呼吸仪(Flowthrough respirometer, 专利号: 200520010482.5) 测定静止耗氧率^[12]; 将禁食 2d 的实验鱼装入呼吸室静息 15h 后分别于 9: 00、15: 00、21: 00 进行三次测定。呼吸室水流速调整范围在 60—100 mL/min 之间。标准代谢率(Standard metabolic rate, *SMR*)的计算公式:

$$SMR = \Delta O_2 \times V_b / m^{0.75} \quad (3)$$

式中 ΔO_2 为呼吸室和空白溶氧($\text{mg O}_2/\text{L}$)的差值; V_b 是呼吸室水流速度(L/h); *m* 为鱼体体重(kg), 0.75 为体重指数。

单位距离能耗(Cost of transport, *COT*)的计算

$$COT = (VO_2 / V) \times 13.54 \quad (4)$$

式中 *COT* 为单位距离能耗($\text{J}/\text{kg}\cdot\text{m}$); VO_2 为实验鱼非体重指数校正的耗氧率($\text{mg O}_2/\text{h}\cdot\text{kg}$); *V* 则表示实验鱼游泳速度(m/h)^[19]; 13.54 为氧热当量系数($\text{J}/\text{mg O}_2$)^[22]。

生化取样与测定 分别将不同速度(20%、40%、60%、80%、100% U_{crit})处理组、静止和高速(130% U_{crit})力竭对照组的实验鱼连同游泳管转入浓度为 0.1 mg/L 的 MS-222 溶液中进行麻醉。然后立即称重并测体长、断尾取血, 取血过程在 1min 之内完成^[23]。血液样品用内壁附有抗凝剂(肝素钠)的离心管收集, 在 4℃下静置 2h 后低温离心(4℃, 3000 r/min 离心 10min), 然后吸取上层血清置于-80℃下保存待测。将取血后的鱼体立即置于冰块上, 迅速取肝脏和尾部肌肉放入液氮罐中, 随后再将样品转移至超低温冰箱(-80℃)中保存待测。

乳酸、血糖测定方法分别为对羟基联苯比色法^[24]和邻甲苯胺法^[23];

糖原、葡萄糖测定方法为蒽酮显色法^[25]。

1.4 数据处理

实验数据采用 Excel(2003)进行数据常规计算,

然后采用 SPSS(11.5)软件进行统计检验; 统计数值均用平均值±标准误(Mean±S.E.)表示, 显著性水平为 $P < 0.05$ 。

2 结 果

2.1 瓦氏黄颡幼鱼的临界游泳速度

在(25±1)℃条件下, 实验鱼的临界游泳速度测定结果显示: 其绝对临界游泳速度为(48.28±1.02) cm/s, 相对临界游泳速度为(6.78±0.16) BL/s。实验鱼高速(130% U_{crit})游泳到达力竭的持续时间仅为(2.81±0.33)min。

2.2 不同游泳速度下的耗氧率及其单位距离能耗(*COT*)的变化

以不同速度(20%、40%、60%、80%、100% U_{crit})游泳时瓦氏黄颡幼鱼的代谢率平均值由 58.88 上升至 329.96 $\text{mg O}_2/\text{h}\cdot\text{kg}$, 差异显著($P < 0.05$, 图 2)。根据文献提供的方法^[26], 采用小于 50% U_{crit} 的实验数据, 运动速度与代谢率关系的指数拟合方程为:

$$y = 57.932e^{0.0186x} \quad (R^2 = 0.9991, P < 0.01) \quad (5)$$

代谢率变化趋势在速度提高后与拟合方程的曲线之间发生分离, 随游泳速度的提高并不一直呈现指数增长的趋势; 在 100% U_{crit} 时拟合方程计算得出代谢率的理论值为 370.69 $\text{mg O}_2/\text{h}\cdot\text{kg}$, 较实际代谢率(329.96 $\text{mg O}_2/\text{h}\cdot\text{kg}$)高 40.73 $\text{mg O}_2/\text{h}\cdot\text{kg}$ (无氧代谢的功率水平), 占代谢率理论值(总功率)的 11.0% (图 2)。另外, 瓦氏黄颡幼鱼在不同游泳速度条件下的 *COT* 的拟合曲线呈 U 型(图 3), 最小 *COT* 出现在 60% U_{crit} , 而 100% U_{crit} 的 *COT* 显著低于 20% U_{crit} 的水平($P < 0.05$), 与其他各组没有显著差异。

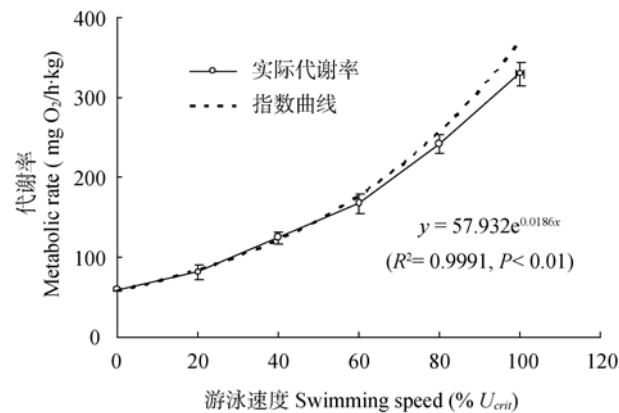


图 2 不同游泳速度下瓦氏黄颡幼鱼代谢率的变化

Fig. 2 Metabolic rate in different swimming speed in juvenile Darkbarbel Catfish (*Pelteobagrus vachelli*) (Mean±S.E. $n=6$)

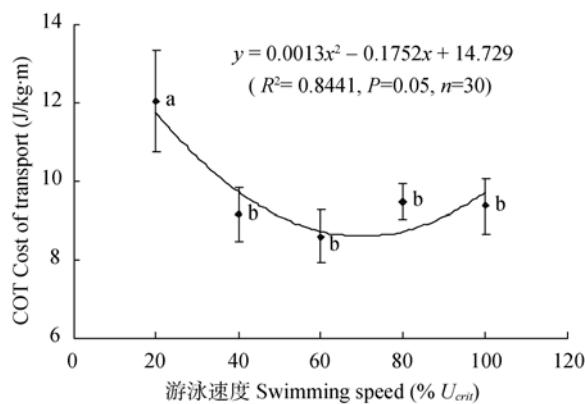


图 3 不同游泳速度下瓦氏黄颡幼鱼单位距离能耗的变化

Fig. 3 Cost of transport in different swimming speed in juvenile Darkbarbel Catfish (*Peltobagrus vachelli*) (Mean \pm S.E. n=6)

a, b表示差异显著($P < 0.05$)

a and b indicate significant difference ($P < 0.05$)

2.3 不同游泳速度下肌肉、血液和肝脏乳酸、糖原含量的变化

本研究结果显示瓦氏黄颡幼鱼在 $80\% U_{crit}$ 以下肌乳酸含量未出现显著性变化($P > 0.05$), 而当速度提升至 $80\% U_{crit}$ 以上时肌乳酸水平开始上升; 血乳酸的变化与肌乳酸的情形相似; 它们二者均在 $100\% U_{crit}$ 时出现显著性增高($P < 0.05$)。另外, 高速力竭组的乳酸含量显著高于 $100\% U_{crit}$ 的水平($P < 0.05$), 可见临界游泳速度状态下机体的乳酸含量并未达到最高水平。随着游泳速度的增加, 三种组织中糖原均呈现下降趋势($P < 0.05$, 表 1), 其中 $100\% U_{crit}$ 肝糖原含量显著低于 $40\% U_{crit}$ 的水平($P < 0.05$), 而这两个速度下的肌糖原含量没有显著性差异($P > 0.05$, 表 1)。

3 讨 论

普遍认为鱼类在到达临界游泳速度之前存在一定比例的无氧代谢^[6-8], 无氧代谢的比例可以表示为无氧代谢功率占总功率的百分比, 该功率比例能够清晰地反应运动时的两种供能状况, 有助于更全面地理解动物的适应特征。种类的不同和生境的差异常常会影响鱼类无氧代谢的功率比例^[11], 已有研究显示, 四种成年野生大马哈鱼的无氧代谢的功率比例存在显著差异, 分别为 24.1%、24.5%、26.0% 和 50.5%^[10]。四种大马哈鱼在不同速度下的实际代谢率的变化与其理论上的指数增长曲线均出现不同程度的偏离, 但无氧代谢功率比例最高的 GC 红大马哈鱼 (Gates Creek Sockeye salmon, *Oncorhynchus*

nerka) 的实际代谢率在接近临界游泳速度时并没有继续以指数方式增加, 而表现为相对平缓的变化趋势, 表明偏离的程度越大, 鱼类的无氧代谢的功率比例则越高^[19]。本研究结果显示瓦氏黄颡幼鱼无氧代谢功率比例与上述四种鱼的结果相比明显较小, 仅为 11.0%; 通过对分析不难发现, 实验鱼在不同速度下的实际代谢率的变化与其指数增长曲线的偏离程度较低(图 2), 与文献中除 GC 红大马哈鱼以外的其他三种大马哈鱼较为接近^[10]。上述现象表明无氧代谢的功率比例对不同速度下的耗氧率曲线特征即变化趋势存在重要影响。

鱼类的无氧代谢启动所对应的速度是另外一个值得关注的问题^[8,27], 无氧代谢启动所对应的速度可以由鱼类随速度变化的实际代谢率变化与其功率指数曲线(Power exponential curve)的分离现象进行推测, 也可以依照肌乳酸含量的显著增加进行判定^[8]。本研究一方面通过比较实际代谢率数据与指数曲线的分离得到无氧代谢的启动速度, 另一方面还通过不同速度下乳酸水平的变化对实验鱼无氧代谢的启动速度进行考查, 表明当游泳速度大于 $80\% U_{crit}$ 时瓦氏黄颡幼鱼无氧代谢开始启动。本研究分别以两个判定指标得到有关无氧代谢启动所对应速度的结果具有较好的一致性, 为鱼类生理学的相关研究提供了新资料。文献报道的虹鳟(*Oncorhynchus mykiss*)与瓦氏黄颡幼鱼相似, 实际代谢率变化趋势偏离功率指数曲线的程度都较低^[9,28]; 虹鳟的无氧代谢启动速度发生在 $70\% U_{crit}$, 无氧代谢的功率比例为 24%^[8]; 瓦氏黄颡幼鱼无氧代谢的启动速度大约在 $80\% U_{crit}$, 无氧代谢的功率比例仅为 11.0%。由此推论, 鱼类无氧代谢启动所对应的百分比速度越高则无氧代谢的功率比例就会越低, 即启动所对应的百分比速度与鱼类的无氧代谢功率比例之间可能存在一定的关联。

相关研究表明运动过程中的无氧代谢功率比例与鱼类种类、个体大小、生活习性和环境类型等因素也存在着密切关联^[8,10,27]。本实验室开展的有关体重对鮀鱼(*Silurus asotus* Linnaeus)力竭运动后过量耗氧影响的研究发现, 体重增加会使有氧适应性降低, 而无氧代谢能力却有较大的提高^[29]。本研究实验鱼平均体重为 4.34 g, 在临界游泳状态下的无氧代谢功率比例仅为 11.0%, 支持有关较小鱼的无氧代谢能力较低的研究结论^[30]。另外, 无氧代谢能力

表1 在不同游泳速度下瓦氏黄颡幼鱼三种组织的代谢物含量(平均值±标准误差, $n=6$)
Tab. 1 Metabolite levels in three tissues of juvenile Darkbarbel Catfish (*Pelteobagrus vachellii*) after different speed swimming (Mean ± S.E. $n=6$)

组织 Tissues	代谢物 Metabolite	游泳速度 Swimming speed (% U_{crit} ; cm/s)					
		Control (0.00)	20% U_{crit} (9.66)	40% U_{crit} (19.31)	60% U_{crit} (28.97)	80% U_{crit} (38.62)	100% U_{crit} (48.28)
肌肉 White muscle	乳酸 Lactate (μmol/g)	4.75 ± 0.25 ^a	5.36 ± 0.39 ^a	5.34 ± 0.29 ^a	5.37 ± 0.55 ^a	5.31 ± 0.43 ^a	7.25 ± 0.70 ^b
	糖原 Glycogen (μmol/g)	9.76 ± 1.39 ^a	12.22 ± 0.84 ^a	11.74 ± 0.96 ^a	9.49 ± 1.02 ^a	9.55 ± 1.43 ^a	8.84 ± 1.69 ^a
	葡萄糖 Glucose (μmol/g)	2.85 ± 0.23	2.81 ± 0.09	2.92 ± 0.11	2.93 ± 0.07	3.04 ± 0.09	2.83 ± 0.11
血液 Blood	乳酸 Lactate (mmol/L)	5.81 ± 0.35 ^a	5.90 ± 0.32 ^a	6.02 ± 0.19 ^a	4.00 ± 0.48 ^a	3.44 ± 0.25 ^a	9.25 ± 2.66 ^b
	血糖 Glucose (mmol/L)	4.84 ± 0.31 ^{ac}	5.13 ± 0.41 ^a	4.99 ± 0.55 ^a	7.05 ± 0.54 ^b	5.46 ± 0.41 ^a	6.07 ± 0.74 ^{ab}
	葡萄糖 Glucose (μmol/g)						3.38 ± 0.51 ^c
肝脏 Liver	乳酸 Lactate (μmol/g)	15.48 ± 1.03	18.09 ± 1.94	18.89 ± 0.93	14.79 ± 1.25	16.45 ± 0.67	15.34 ± 1.49
	糖原 Glycogen (μmol/g)	302.71 ± 15.62 ^{ab}	313.70 ± 19.43 ^{ab}	352.04 ± 18.37 ^a	316.16 ± 16.15 ^{ab}	315.41 ± 14.96 ^{ab}	267.27 ± 34.66 ^b
	葡萄糖 Glucose (μmol/g)	24.04 ± 1.94 ^{bc}	24.41 ± 2.20 ^{bc}	29.02 ± 2.81 ^{ac}	34.19 ± 2.03 ^{ad}	21.22 ± 1.42 ^{be}	26.11 ± 2.20 ^{ce}

注: 同行上标英文字母不同的数值间差异显著($P < 0.05$)

Note: Values in each row without a common superscript are significantly different ($P < 0.05$)

对于鱼类穿越激流、逃避敌害和有效捕食具有重要的作用^[27]，冷水性的大马哈鱼均在较低速度下开始启动无氧代谢，与其洄游过程中需要在短时间内通过无氧代谢提供足够的能量有关^[10,11]，而瓦氏黄颡鱼是一种非洄游性鱼类^[12]，因此在其生活史对无氧代谢的生存依赖程度不及很多洄游性鱼类^[8,10]的高。

鱼类的有氧与无氧代谢能力之间可能存在某种权衡^[6]，即有氧代谢能力较强的鱼，其无氧代谢能力可能就会较弱。这种权衡机制的深入探讨将有助于理解鱼类不同运动方式和生态习性的关系。

参考文献：

- [1] Kieffer J D. Limits to exhaustive exercise in fish [J]. *Comparative Biochemistry and Physiology*, 2000, **126A**: 161—179
- [2] Franklin C E, Wilson R S, Davison W. Locomotion at -1.0°C : burst swimming performance of five species of Antarctic fish [J]. *Journal of Thermal Biology*, 2003, **28**: 59—65
- [3] Baldwin J, Seymour R S, Webb G J W. Scaling of anaerobic metabolism during exercise in the estuarine crocodile (*Crocodylus porosus*) [J]. *Comparative Biochemistry and Physiology*, 1995, **112A**: 285—293
- [4] Virani N A, Rees B B. Oxygen consumption, blood lactate and interindividual variation in the gulf killifish, *Fundulus grandis*, during hypoxia and recovery [J]. *Comparative Biochemistry and Physiology*, 2000, **126A**: 397—405
- [5] Day N, Butler P J. The effects of acclimation to reversed seasonal temperature on the swimming performance of adult brown trout *Salmo trutta* [J]. *The Journal of Experimental Biology*, 2005, **208**: 2683—2692
- [6] Reidy S P, Kerr S R, Nelson J A. Aerobic and anaerobic swimming performance of individual Atlantic Cod [J]. *The Journal of Experimental Biology*, 2000, **203**: 347—357
- [7] Rome L C, Loughna P T, Goldspink G. Muscle fibre activity in carp as a function of swimming speed and muscle temperature [J]. *American Journal of Physiology*, 1984, **247R**: 272—279
- [8] Burgetz I J, Rojas-vargas A, Hinch S G, et al. Initial recruitment of anaerobic metabolism during submaximal swimming in rainbow trout (*Oncorhynchus mykiss*) [J]. *The Journal of Experimental Biology*, 1998, **201**: 2711—2721
- [9] Webb P W. The swimming energetics of trout. II. Oxygen consumption and swimming efficiency [J]. *The Journal of Experimental Biology*, 1971, **55**: 521—540
- [10] Lee C G, Farrell A P, Lotto A, et al. Excess post-exercise oxygen consumption in adult sockeye (*Oncorhynchus nerka*) and coho (*O. kisutch*) salmon following critical speed swimming [J]. *The Journal of Experimental Biology*, 2003, **206**: 3253—3260
- [11] Farrell A P. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls [J]. *Philosophical Transactions of the Royal Society*, 2007, **362B**: 2017—2030
- [12] Fu S J, Cao Z D, Peng J L. The effect of chasing and air exposing oxygen consumption in *Pelteobagrus vachelli* [J]. *Chinese Journal of Zoology*, 2007, **42**(2): 111—115 [付世建, 曹振东, 彭姜岚. 追赶和空气暴露时间对瓦氏黄颡鱼耗氧率的影响. 动物学杂志, 2007, **42**(2): 111—115]
- [13] Li W X, Wang G T, Wu S G, et al. Population dynamics and frequency distribution of the nematode *Procamallanus fulvidraconis* and trematode *Genarchopsis goppo* in yellowhead catfish *Pelteobagrus fulvidraco* [J]. *Acta Hydrobiologica Sinica*, 2008, **32**(2): 195—200 [李文祥, 王桂堂, 吴山功, 等. 黄颡鱼河鲈源吸虫和黄颡前驼形线虫的季节动态和频率分布. 水生生物学报, 2008, **32**(2): 195—200]
- [14] Zhao W X, Yang X, Peng Z, et al. Molecular identification of the four species of the genus *Pelteobagrus* and the genetic analysis of their hybrid [J]. *Acta Hydrobiologica Sinica*, 2006, **30**(1): 101—106 [赵文学, 杨星, 彭智, 等. 黄颡鱼属物种的 RAPD 分子鉴定及杂种遗传分析. 水生生物学报, 2006, **30**(1): 101—106]
- [15] Liu Y, Cao Z D, Fu S J, et al. The effect of exhaustive chasing training and detraining on swimming performance in juvenile darkbarbel catfish (*Pelteobagrus vachelli*) [J]. *Journal Comparative Physiology*, 2009, **179B**: 847—855
- [16] Zhang Y, Cao Z D, Fu S J. Effect delayed first feeding on the energy content, body length and swimming performance of southern catfish (*Silurus meridionalis* Chen) larvae [J]. *Acta Ecological Sinica*, 2007, **27**(3): 1161—1167 [张怡, 曹振东, 付世建. 延迟首次投喂对南方鮰 (*Silurus meridionalis* Chen) 仔鱼身体含能量、体长及游泳能力的影响. 生态学报, 2007, **27**(3): 1161—1167]
- [17] Jain K E, Hamilton J C, Farrell A P. Use of a ramp velocity test to measure critical swimming speed in Rainbow trout (*Oncorhynchus mykiss*) [J]. *Comparative Biochemistry Physiology*, 1997, **117A**: 441—444
- [18] Jain K E, Farrell A P. Influence of seasonal temperature on the repeat swimming performance of rainbow trout *Oncorhynchus mykiss* [J]. *The Journal of Experimental Biology*, 2003, **206**: 3569—3579
- [19] Lee C G, Farrell A P, Lotto A, et al. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (*Oncorhynchus nerka*) and coho (*O. kisutch*) salmon stocks [J]. *The Journal of Experimental Biology*, 2003, **206**: 3239—3251
- [20] Derek H A, Chris M W. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in Juvenile rainbow trout (*Oncorhynchus mykiss*) [J]. *The Journal of Experimental Biology*, 1997, **200**: 2337—2346

- [21] Pang X, Cao Z D, Peng J L, Fu S J. The effects of feeding on the swimming performance and metabolic response of juvenile southern catfish, *Silurus meridionalis*, acclimated at different temperatures [J]. *Comparative Biochemistry and Physiology*, 2010, **155A**: 253—258
- [22] Claireaux G, Couturier C, Groison A. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (*Dicentrarchus labrax*) [J]. *The Journal of Experimental Biology*, 2006, **209**: 3420—3428
- [23] Luo Y P, Yuan L Q, Cao Z D, et al. The study on haematological parameters of *Mystus macropterus* and *Pelteobagrus vachellii* in Jialing River [J]. *Acta Hydrobiologica Sinica*, 2005, **29**(2): 161—166 [罗毅平, 袁伦强, 曹振东, 等. 嘉陵江大鳍鳠和瓦氏黄颡鱼血液指标的研究. 水生生物学报, 2005, 29(2): 161—166]
- [24] Zhang L X, Zhang T F, Li L Y. Biochemistry experiments and technology [M]. Beijing: High Education Press. 1997, 422—427 [张龙翔, 张庭芳, 李令媛. 生化实验方法和技术. 北京: 高等教育出版社. 1997, 422—427]
- [25] Blasco J, Marimon I, Viaplana I, et al. Fate of plasma glucose in tissues of brown trout in vivo: effects of fasting and glucose loading [J]. *Fish Physiology and Biochemistry*, 2001, **24**: 247—258
- [26] Fitzgibbon Q P, Strawbridge A, Seymour R S. Metabolic scope, swimming performance and the effects of hypoxia in the mulloway, *Argyrosomus japonicus* (Pisces: Sciaenidae) [J]. *Aquaculture*, 2007, **270**: 358—368
- [27] Reidy S P, Nelson J A, Tang Y, et al. Post-exercise metabolic rate in Atlantic cod and its dependence upon the method of exhaustive [J]. *Journal of Fish Biology*, 1995, **47**: 377—386
- [28] Bushnell P G, Steffensen J F, Johansen K. Oxygen consumption and swimming performance in hypoxia-acclimated rainbow trout *Salmo gairdneri* [J]. *The Journal of Experimental Biology*, 1984, **113**: 225—235
- [29] Peng J L, Cao Z D, Fu S J. Excess post-exercise oxygen consumption in *Silurus asotus* Linnaeus and its relationship with body weight [J]. *Acta Hydrobiologica Sinica*, 2008, **32**(3): 380—386 [彭姜岚, 曹振东, 付世建. 鲇鱼力竭性运动后的过量耗氧及其体重的影响. 水生生物学报, 2008, 32(3): 380—386]
- [30] Goolish E M. The scaling of aerobic and anaerobic muscle power in rainbow trout (*Salmo gairdneri*) [J]. *The Journal of Experimental Biology*, 1989, **147**: 493—505

AEROBIC AND ANAEROBIC METABOLISM IN RESPONSE TO DIFFERENT SWIMMING SPEED OF JUVENILE DARKBARBEL CATFISH (*PELTEOBAGRUS VACHELLI RICHARDSON*)

ZHU Yan-Ping, CAO Zhen-Dong and FU Shi-Jian

(*Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047*)

Abstract: The aim of this study were, to determine the anaerobic to aerobic metabolism ratio under the maximum sustainable swimming speed (critical swimming speed, U_{crit}) of selected fish species, to examine at what swimming speed fish start to recruit its anaerobic metabolism, and hence to investigate the relationship among locomotion performance, energy supply characteristics and ecological habits of selected experimental animal. Juvenile darkbarbel catfish (*Pelteobagrus vachelli* Richardson) [w: (4.34±0.13) g], an economic fish species distribute widely in the Yangtze River and Pearl River, were chosen as the experimental animal. The critical swimming speed (U_{crit}) of juvenile Darkbarbel Catfish was determined at (25 ± 1)°C. Based on the U_{crit} data, we set 7 experimental groups: 2 control groups (resting control group and high-speed exhaustive control group) and 5 speed-manipulating groups, which were set following the gradient of mean U_{crit} (20, 40, 60, 80 and 100% U_{crit}). Fish of speed-manipulating groups were forced to swim for 20 minutes at its setting speed, during this period, the oxygen consumption rate was measured and the activity metabolic rate was calculated. The lactate, glycogen and glucose levels of muscle, blood and liver of fish in experimental treatment groups were determined immediately after forced swimming. The biochemical parameters and resting metabolic rate (only for resting control group) were also measured in two control groups. The absolutely critical swimming speed of juvenile darkbarbel catfish in this study was (48.28±1.02) cm/s and the relative critical swimming speed was (6.78±0.16) BL/s. The oxygen consumption rate raised significantly with the increasing of the swimming speed ($P < 0.05$). The muscle and blood lactate levels of fish underwent 100% U_{crit} treatment were (7.25±0.70) μmol/g and (9.25±2.66) mmol/L while the lactate levles of muscle and blood samples were (5.31±0.43) μmol/g and (3.44±0.25) mmol/L, respectively. The lactate levels of both muscle and blood samples of 100% U_{crit} treatment group were significantly higher than those of 80% U_{crit} treatment group ($P < 0.05$) while the lactate level of liver showed no significant change ($P > 0.05$); As swimming speed increased, glycogen content of all three tissues showed a downward trend ($P < 0.05$), of which liver glycogen content of 100% U_{crit} group was significantly lower than that of 40% U_{crit} level ($P < 0.05$) while glycogen content of muscle showed no significant difference among all experimental treatment groups ($P > 0.05$). Glucose levels remained relatively stable. Calculated anaerobic metabolism to aerobic metabolism power ratio was 11.0% when juvenile Darkbarbel Catfish reached the critical swimming speed, indicating that the main power came from aerobic metabolism path; anaerobic metabolism started its function when fish reached around 80% of its U_{crit} , the start-up time was late comparing with other fish. It showed that their swimming activity relied less on anaerobic metabolism. This study indicates that juvenile Darkbarbel Catfish has strong aerobic capacity and the characteristics of energy metabolism in this fish species may be related to its higher survival fitness.

Key words: Critical swimming speed; Darkbarbel Catfish; Oxygen consumption rate; Lactate; Glycogen