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AEROBIC AND ANAEROBIC METABOLISM IN RESPONSE TO DIFFERENT
SWIMMING SPEED OF JUVENILE DARKBARBEL CATFISH (PELTEOBAGRUS
VACHELLI RICHARDSON)

ZHU Yan-Ping, CAO Zhen-Dong and FU Shi-Jian

(Laboratory of Evolutionary Physiology and Behaviour, Chongging Key Laboratory of Animal Biology,
Chongging Normal University, Chongging 400047)

Abstract: The aim of this study were, to determine the anaerobic to aerobic metabolism ratio under the maximum sus-
tainable swimming speed (critical swimming speed, Ugi;) of selected fish species, to examine at what swimming speed
fish start to recruit its anaerobic metabolism, and hence to investigate the relationship among locomotion performance,
energy supply characteristics and ecological habits of selected experimental animal. Juvenile darkbarbel catfish
(Pelteobagrus vachelli Richardson) [w: (4.34+0.13) g], an economic fish species distribute widely in the Yangtze River
and Pearl River, were chosen as the experimental animal. The critical swimming speed (U;) of juvenile Darkbarbel
Catfish was determined at (25 + 1)°C. Based on the U, data, we set 7 experimental groups: 2 control groups (resting
control group and high-speed exhaustive control group) and 5 speed-manipulating groups, which were set following the
gradient of mean U, (20, 40, 60, 80 and 100% U,;;). Fish of speed-manipulating groups were forced to swim for 20
minutes at its setting speed, during this period, the oxygen consumption rate was measured and the activity metabolic
rate was calculated. The lactate, glycogen and glucose levels of muscle, blood and liver of fish in experimental treatment
groups were determined immediately after forced swimming. The biochemical parameters and resting metabolic rate
(only for resting control group) were also measured in two control groups. The absolutely critical swimming speed of
juvenile darkbarbel catfish in this study was (48.28+1.02) cm/s and the relative critical swimming speed was (6.78+0.16)
BL/s. The oxygen consumption rate raised significantly with the increasing of the swimming speed (P <0.05). The mus-
cle and blood lactate levels of fish underwent 100% U, treatment were (7.254+0.70) umol/g and (9.25+£2.66) mmol/L
while the lactate levles of muscle and blood samples were (5.31£0.43) umol/g and (3.44+0.25) mmol/L, respectively.
The lactate levels of both muscle and blood samples of 100% Uy, treatment group were significantly higher than those
of 80% U treatment group (P <0.05) while the lactate level of liver showed no significant change (P> 0.05); As
swimming speed increased, glycogen content of all three tissues showed a downward trend (P <0.05), of which liver
glycogen content of 100% U, group was significantly lower than that of 40% U, level (P <0.05) while glycogen
content of muscle showed no significant difference among all experimental treatment groups (P> 0.05). Glucose levels
remained relatively stable. Calculated anaerobic metabolism to aerobic metabolism power ratio was 11.0% when juve-
nile Darkbarbel Catfish reached the critical swimming speed, indicating that the main power came from aerobic me-
tabolism path; anaerobic metabolism started its function when fish reached around 80% of its U, the start-up time was
late comparing with other fish. It showed that their swimming activity relied less on anaerobic metabolism. This study
indicates that juvenile Darkbarbel Catfish has strong aerobic capacity and the characteristics of energy metabolism in
this fish species may be related to its higher survival fitness.

Key words: Critical swimming speed; Darkbarbel Catfish; Oxygen consumption rate; Lactate; Glycogen



