

底泥中微囊藻复苏和生长特性的研究

李阔宇 宋立荣 万能

(中国科学院水生生物研究所, 武汉 430072)

摘要: 研究了微囊藻群体从底泥中释放进入水体的过程及这一过程与水体温度、光照及营养盐的关系, 并比较了底泥和水体中微囊藻群体的生长特性。同时, 比较了温度对经低温(4°C)处理的和处于对数期的 *Microcystis*. sp. 940 的叶绿素荧光强度的影响。结果表明, 在 15°C , $30\mu\text{Em}^{-2}\text{s}^{-1}$ 光照条件下, 底泥中的微囊藻群体复苏开始启动, 并于 15d 后开始上升到水体中。研究表明, 存在于底泥中的微囊藻群体从底泥中迁移至上层水体的最适条件为 20°C , $30\mu\text{Em}^{-2}\text{s}^{-1}$ 。分别培养底泥微囊藻群体和同时期水体中的微囊藻群体, 研究它们的生长特性, 发现底泥中的微囊藻群体生长的最适温度为 20°C , 光照强度为 $30\mu\text{Em}^{-2}\text{s}^{-1}$, 与同期水体中的微囊藻群体生长条件相似。

经低温(4°C)处理的微囊藻群体和生长周期处于对数期的微囊藻群体叶绿素荧光的影响的实验中, 作者发现在 20°C 和 25°C 时, 两种经过不同处理的微囊藻群体都随着时间增加而增长。但是, 在 10°C 和 15°C 时, 低温处理的微囊藻群体的叶绿素荧光随着时间增加而增长, 而处于对数期的微囊藻群体的叶绿素荧光随着时间增加而降低。这表明长期处于低温和黑暗环境中的微囊藻细胞的光系统II未受到严重的损伤, 当环境转变有利于生长时, 微囊藻细胞的光系统II恢复活性。本研究结果初步揭示了底泥中微囊藻群体的萌发复苏过程与微囊藻水华的暴发的关系。

关键词: 微囊藻; 底泥; 迁移; 叶绿素荧光

中图分类号: X173 文献标识码: A 文章编号: 1000-3207(2004)02-0113-06

许多浮游藻类在生长环境不利时会形成休眠体, 以这种方式暂时存在于底泥中。等到环境条件转好时, 休眠体大量萌发, 藻类迅速繁殖形成水华。浮游藻类的这种生活策略可以帮助其渡过生长环境恶劣的时期。这些浮游藻类的休眠体可以在底泥中存活几年, 甚至几个世纪^[1]。研究表明^[2], 某些种类的蓝藻可以形成在形态上可以区分的休眠孢子, 例如 *Anabaena* 和 *Gleotrichia. Semen*; 但是 *Microcystis* 等种类的蓝藻并不形成孢子, 而是以营养细胞的形态越冬。

目前的研究表明, 微囊藻水华的爆发与其休眠复苏机制有密切的关系。在自然水体中, 微囊藻休眠体的复苏与温度^[3]、光照^[4]和营养盐^[5]等有密切的关系。Preston^[6]研究表明, 夏季水体中的初期发生的微囊藻水华主要来源于底泥中的越冬微囊藻群体。

目前, 在实验室条件下, 对自然湖泊底泥中的微囊藻群体复苏过程的研究较少。因此, 作者在实验

室条件下对自然湖泊底泥中的微囊藻进行培养, 研究底泥中微囊藻群体的复苏过程及其环境因素对这一过程的影响, 以期寻求环境因子和底泥微囊藻群体复苏过程的关系。

1 材料与方法

1.1 材料及其处理 使用 Pettersson 采泥器采集湖北武汉市关桥鱼池底泥。使用 25# 浮游植物网采集水体中的浮游藻类。底泥用 0.2mm 筛子初滤后, 用 25# 浮游植物网过滤, 收集浮游植物网中的残留物, 用蒸馏水洗涤, 离心, 去上清, 重复该操作 4—6 次。对底泥镜检发现, 底泥中含有栅藻(*Scenedesmus*), 微囊藻(*Microcystis*), 鱼腥藻(*Anabaena*)和硅藻(*Bacillariophyta*)等浮游藻类; 收集沉淀物悬于 BG11 中, 置于 4°C 冰箱保存。水样中的浮游藻类用蒸馏水重悬后离心 4—6 次, 样品悬于 BG11 培养基中置于 4°C 冰箱保存。

收稿日期: 2003-11-17; 修订日期: 2003-12-10

基金项目: 国家重点基础研究发展计划项目(2002CB412306); 中国科学院知识创新工程重要方向性项目(Kscx2-F-10); 滇池蓝藻水华污染控制技术研究 K99053501 资助

作者简介: 李阔宇(1977—), 男, 湖北武汉人, 硕士研究生, 主要从事藻类生理生态研究

通讯作者: 宋立荣, lsong@ihb.ac.cn

1.2 生长条件 取处理后的底泥样品和水体样品, 分别加入 BG11^[7] 培养基。实验设温度、光强、氮磷比浓度三种处理。培养温度: 10℃、15℃、20℃ 和 25℃, 连续光照, 光照强度 $30\mu\text{Em}^{-2}\text{s}^{-1}$; 光照强度: $0\mu\text{Em}^{-2}\text{s}^{-1}$ 、 $10\mu\text{Em}^{-2}\text{s}^{-1}$ 和 $30\mu\text{Em}^{-2}\text{s}^{-1}$, 连续光照, 培养温度 20℃; 氮元素和磷元素浓度: 1.5g/L: 0.04g/L、1.5g/L: 0g/L、0g/L: 0.04g/L 和 0g/L: 0g/L, 培养温度 20℃、光照强度 $30\mu\text{Em}^{-2}\text{s}^{-1}$ 连续光照。

1.3 底泥释放实验 在锥形瓶和烧杯中加入 20mL 底泥, 然后, 再加入 80mL BG11 培养基。在烧杯中倒置一个预先充满 BG11 培养基的 20mL 的圆柱形 trap。按照上述设计的生长条件处理方法进行实验。每隔 5d 分别取锥形瓶、烧杯和 20mL 圆柱形 trap 内藻液 1mL, 超声波处理成单细胞后, 记数。在生长特性实验中, 取样前摇匀; 底泥释放的原位实验中, 封闭 trap 的下口, 取出, 避免搅动底泥。trap 内取样后, 弃去原有藻液, 换上新鲜 BG11。烧杯内取样时, 用玻璃管插至底泥表面后, 封闭玻璃管上端开口, 垂直取出玻璃管, 混匀管内水样后, 取样。

1.4 叶绿素荧光实验 收集处于生长稳定期的 *Microcystis* sp. 940 放置于 4℃, 黑暗条件下放置四个月后, 取一定量的藻液接种于 50mL 的 BG11 培养基中, 培养在 $30\mu\text{Em}^{-2}\text{s}^{-1}$, 10℃、15℃、20℃ 和 25℃ 的条件下培养。在培养 0、4、8、24、48 和 72h, 取 3mL 藻液, 使用 PHYTO-PAM (Phytoplankton Analyzer, WALZ) 测定叶绿素荧光强度。记录时间不少于 5s。将处于对数生长期的 *Microcystis* sp. 940 接种于 50mL 的 BG11 培养基中, 处理方法同上。

2 结果

2.1 底泥和浮游带微囊藻群体的生长特性

2.1.1 温度与底泥及水体微囊藻群体生长的关系

比较了底泥微囊藻群体和浮游带中采集到的微囊藻群体在 10℃、15℃、20℃、25℃ 时的生长速率, 图 1 中 A, B 分别显示结果。比较两图发现, 底泥微囊藻群体和水体微囊藻群体的生长与温度有很好的对应关系。它们从 10℃ 时开始生长, 但生长很缓慢。在 10—20℃ 的温度范围内, 它们的生长速率随着温度的升高而提高。

2.1.2 光照强度与底泥及水体微囊藻生长的关系

在图 2A, B 中显示了 0 — $30\mu\text{Em}^{-2}\text{s}^{-1}$ 光照强度范围内底泥和水体微囊藻群体的生长速率与光照的关系。由两图可以看出, 来源于底泥中的微囊藻群体和水体的微囊藻群体的生长相似, 它们的生长都依

赖光照。在 0 — $30\mu\text{Em}^{-2}\text{s}^{-1}$ 光照强度范围内, 两种不同来源的微囊藻群体生长速率随着光照强度的加强而提高。当在没有光照时, 底泥中的微囊藻群体的细胞数减少; 将无光照的底泥微囊藻群体再培养至第 7d 时, 转移到 $30\mu\text{Em}^{-2}\text{s}^{-1}$ 的光照条件后, 底泥中的微囊藻群体细胞浓度增加。这说明底泥中微囊藻群体的生长受到光照的限制。

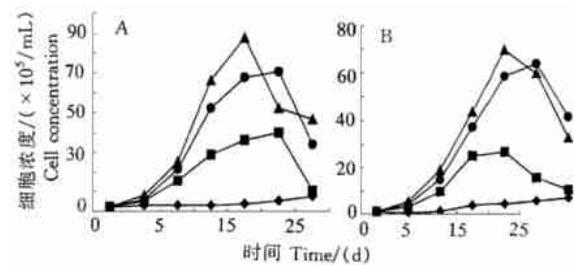


图 1 温度与微囊藻群体生长的关系

Fig. 1 The growth of *Microcystis* colony under different temperature

A. 温度与底泥微囊藻群体生长的关系; B. 温度与浮游带中微囊藻群体生长的关系

—◆— 10℃ —■— 15℃ —▲— 20℃ —●— 25℃

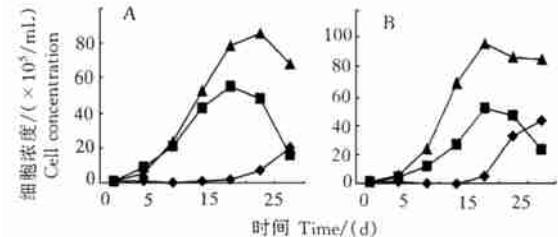


图 2 微囊藻群体生长和光照的关系

Fig. 2 The growth of *Microcystis* colony under different light intensity

A. 光照和底泥微囊藻群体生长的关系; B. 光照和浮游带微囊藻群体生长的关系

—◆— $0\mu\text{Em}^{-2}\text{s}^{-1}$ —■— $10\mu\text{Em}^{-2}\text{s}^{-1}$ —▲— $30\mu\text{Em}^{-2}\text{s}^{-1}$

2.1.3 N/P 浓度与底泥及水体微囊藻生长的关系

图 3A, B 中显示不同 N/P 分别与底泥和水体微囊藻群体生长速率的关系。由两图可以看出, 底泥微囊藻群体在生长初期是不受 N/P 影响的。这主要是由于在样品的处理过程中, 不能将底泥与微囊藻分离开来。因此, 底泥中的营养物质被带入到底泥微囊藻群体的培养样品中, 所以在底泥微囊藻群体生长的初期, 在不同的 N/P 条件下, 微囊藻群体都可以生长。但是随着微囊藻群体的生长, 从底泥中释放入水体的营养物质被消耗尽后, N/P 对于底泥微囊藻群体生长的影响就表现出来。由图 3B 可以看出, 当培养基中缺少 N 元素时, 浮游带的微囊藻群体生长受到抑制。由此发现生长在底泥中的微囊藻群体可以从底泥中获得丰富的 N/P。

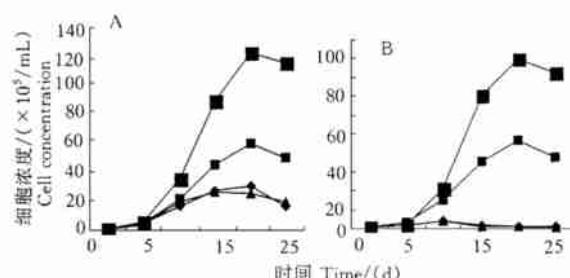


图3 N/P与微囊藻群体生长的关系

Fig. 3 The growth of *Microcystis* colony under different N/P

A. N/P与底泥微囊藻群体生长的关系; B. N/P与水体微囊藻群体生长的关系

→— 0/0.04; —■— 1.5/0.04; —▲— 0/0; —■— 1.5/0.04

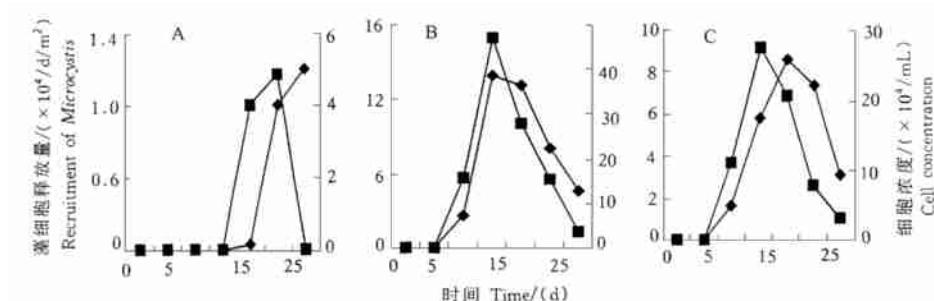


图4 不同温度条件下底泥微囊藻群体上升的情况

Fig. 4 Recruitment of *Microcystis* colony under different temperature

A. 15°C; B. 20°C; C. 25°C

—■— Trap中微囊藻细胞浓度 —▲— 水体中微囊藻细胞浓度

2.2.1 温度对微囊藻群体从底泥中释放的影响

图4中显示了温度对于底泥微囊藻群体释放速度的影响。由图4可以看出, 底泥中微囊藻群体从底泥中释放进入水体的速率随温度的提高而上升。温度在15°C时, 底泥中微囊藻群体开始从底泥中释放进入水体; 在20°C时, 底泥中微囊藻群体大量从底泥中释放进入水体。在15°C的时候, 平均值为 1.2×10^4 个/ $d \cdot cm^2$, 但是在20°C的时候达到 15×10^4 个/ $d \cdot cm^2$ 。上层水体中微囊藻群体总生物量中的一小部分来源于底泥中的微囊藻群体。25°C时的情况与20°C的情况相似。

2.2.2 光照强度对微囊藻群体从底泥中释放的影响

由图5可知, 底泥微囊藻群体从底泥中释放进入水体的过程是与光照有密切的关系。在无光照时, 底泥中微囊藻群体没有从底泥中释放进入; 在 $10 \mu Em^{-2}s^{-1}$ 光照时, 微囊藻群体开始从底泥中释放进入水体。这时, trap中所收集到的从底泥中释放出来的微囊藻群体生物量升高, 直到约25d左右, 底泥中的微囊藻群体大部分都上升到水体中了, 所以

2.2 微囊藻群体从底泥中释放实验

在一定的环境条件刺激下, 底泥微囊藻群体浮力增大, 从底泥中迁移到水体中。为了解不同环境因素对底泥微囊藻群体释放到水体这一过程的影响, 作者设计了一个20mL的圆柱形玻璃trap, 倒扣在150mL的烧杯中, 来收集从底泥中上升到单位面积水体中的微囊藻群体, 经超声波处理后记数, 与水体中微囊藻群体的生物量进行比较(操作见方法), 从而了解其从底泥上浮、生长的特性, 及其与环境的关系。图4—6中, 左侧纵坐标代表单位面积底泥中每天释放入上层水体的微囊藻群体的生物量, 右侧纵坐标代表上层水体的微囊藻群体的生物量。

每天释放的微囊藻群体数目开始下降。

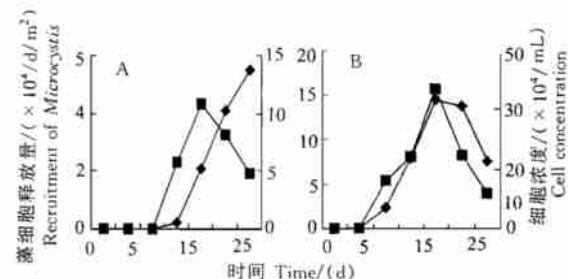


图5 不同光照条件下微囊藻群体上升的情况

Fig. 5 Recruitment of *Microcystis* colony under different light intensity

—■— Trap中微囊藻细胞浓度 —▲— 水体中微囊藻细胞浓度

2.2.3 N/P对微囊藻群体从底泥中释放的影响

图6中A, B, C, D分别表示不同的N/P条件下, trap中和水体中的微囊藻群体生物量的变化。由图6可以知道, 微囊藻群体在底泥中的早期的生长可以从底泥中获取生长所需的营养物, 水体中氮磷浓度对微囊藻群体从底泥中释放进入水体没有影响。微囊

藻群体从底泥中释放进入水体之后的生长会受到上层水体中氮磷营养物浓度的影响。因此,上层水体中的氮磷浓度的变化不会影响底泥中微囊藻群体迁移到水体的过程,相反,上层水体中的N/P浓度只会影响已经进入上层水体中的微囊藻群体的生长。

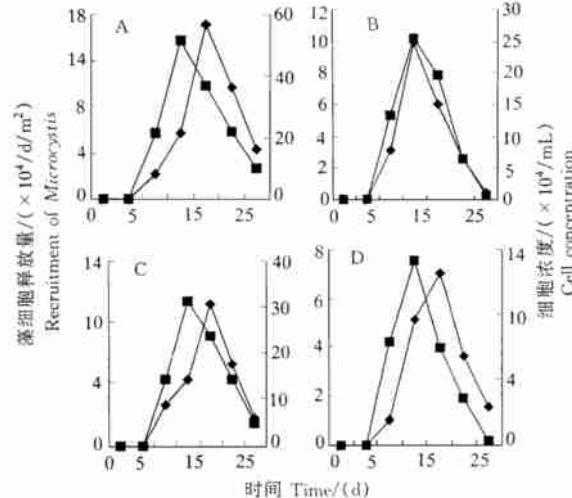


图6 不同N/P条件下微囊藻群体上升的情况

Fig. 6 Recruitment of *Microcystis* colony under different N/P
 A. N/P = 1.5/0.04; B. N/P = 0/0.04; C. N/P = 1.5/0; D. N/P = 0/0
 —■— Trap 中微囊藻细胞浓度 —▲— 水体中微囊藻细胞浓度

2.3 温度与微囊藻群体叶绿素荧光强度的关系

不同温度对两种处理 *Microcystis* sp. 940 的叶绿素荧光 Fv/Fm 比值的影响如图 7 所示: 在 10℃ 和 15℃ 时, 经过低温处理的 *Microcystis* sp. 940 的 Fv/Fm 的比值增大。但是, 处于对数期的微囊藻群体 Fv/Fm 比值减小。在 20℃ 和 25℃ 时, 两种经过不同处理 *Microcystis* sp. 940 的 Fv/Fm 的比值的变化相似, 都呈上升趋势。经过低温处理的 *Microcystis* sp. 940 的叶绿素 a 荧光较弱, 低温环境对其光合系统造成一定程度的损伤。

3 讨论

底泥微囊藻群体迁移至水体的初期, 水体中的微囊藻群体的生物量主要来源于底泥中释放的微囊藻群体, 微囊藻群体在进入水体后, 开始了大量的繁殖。微囊藻群体从底泥中迁移至水体的过程表现出, 在实验初期较多, 后期较少的现象, 这可能是因为在实验初期, 底泥中微囊藻群体较多, 随着微囊藻群体进入水体, 底泥中的微囊藻群体减少, 进入水体的微囊藻群体量降低。本实验的结果表明, 底泥中的微囊藻群体在外界环境温度和光照适宜时, 可以正常生长, 并且可以迁徙至水体表层。这个过程受

到光照, 温度, 营养盐等条件的影响, 在 20℃, 30Em⁻²S⁻¹ 的条件下, 底泥中微囊藻群体的生长速率达到最大, 这个和水体中微囊藻群体的生长特性相一致。

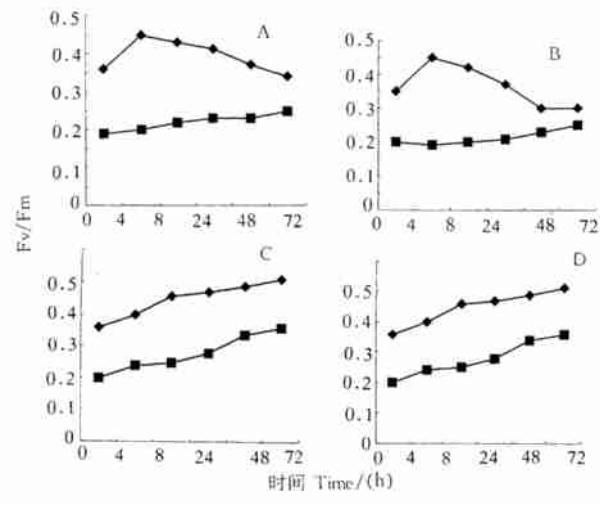


图7 温度与经低温处理的和处于对数期的 *Microcystis* sp. 940 叶绿素荧光强度的关系

Fig. 7 Effect of temperature on value of Chlorophyll a fluorescence of *Microcystis* sp. 940
 A. 10℃; B. 15℃; C. 20℃; D. 25℃
 —▲— 处于对数期的 *Microcystis* sp. 940 —■— 经低温处理的 *Microcystis* sp. 940

植物叶绿素荧光在许多研究中被用作评价光合作用过程和不同环境因子对光合能力影响的指标^[8,9]。叶绿素 a 荧光的可变部分(Fv)与最大荧光(Fm)的比值可显示光系统 II 的光化学效率。当微囊藻群体被从适宜的生长温度转移至低温(< 15℃)时, Fv/Fm 的比值降低, 说明光系统 II 的光化学效率降低。但是, 将处于低温(4℃)的微囊藻群体转移至较高温度(> 10℃)培养时, Fv/Fm 的比值开始缓慢地升高, 光系统 II 逐渐地恢复活性。本实验表明, 微囊藻群体长期处于低温环境中, 光系统 II 受到一定的损伤, 但仍然具有活性。当环境改变, 对生长有利时, 光系统 II 的活性开始恢复。

微囊藻群体迁移至水体中与水体的温度, 光照, 有着明显的关系, 而与水体中的 N/P 浓度关系不大。Reynolds^[10] 提出, 当水体的温度达到 7—8℃ 时, 微囊藻群体在底泥中开始初期缓慢的生长; 微囊藻群体在 15℃ 时, 生长速率增大, 并且开始少量地迁移至水体中。在本实验中, 综合两个实验的结果发现当环境温度在 10℃ 时, 微囊藻群体开始在底泥中生长, 但生长缓慢。而且, 这时期的微囊藻群体密度仍然大于水的密度, 因此, 微囊藻群体不能迁至水体

中。这与 Reynolds 的观点一致。

另外, 本实验的结果和自然界微囊藻群体的生长特点相一致。当在春季时, 温度升高, 光照可以到达底泥表面, 微囊藻群体开始在底泥中开始季节初期生长。在夏初时, 底泥中的微囊藻群体大量从底泥中迁至水体表层。在水体表层, 微囊藻群体获得更适宜的光照, 大量在水体中生长繁殖, 形成水华。同时, Shigeo 等人^[11] 观察到微囊藻群体从底泥迁移到水体的现象主要发生在湖泊的浅水区。这主要是因为光照刺激底泥中的微囊藻群体生长, 当微囊藻群体生长到其密度小于水的密度时, 微囊藻群体上升到水体中。在湖泊的浅水区, 光照可以到达底泥表面, 刺激底泥中微囊藻群体的生长和从底泥中迁移至水体中。这个结果和作者的结果也是一致的。

参考文献:

- [1] Hairston N G, Van Brunt R A, Keams C M, *et al.* Age and survivorship of diapausing eggs in a sediment egg bank [J]. *Ecology*, 1995, **76**: 1706—1711
- [2] Annika Ståhl Delbanco, Lars Anders Hansson. Effects of bioturbation on recruitment of algae cells from the “seed bank” of lake sediments [J]. *Limnol Oceanogr*, 2002, **47**(6): 1836—1843
- [3] Rengefors K, Karlsson I, Hansson L A. Algal cyst dormancy a temporal escape from herbivory [J]. *Proc. R. Soc. Lond*, 1998, **265**: 1353—1358
- [4] Rengefors K, Karlsson I, Hansson L A. Algal cyst dormancy a temporal escape from herbivory [J]. *Proc R Soc. Lond*, 1998, **265**: 1353—1358
- [5] Van Dok W, Hart B T. Akinete germination in *Anabaena circinalis* (Cyanophyta) [J]. *J Phycol*, 1997, **33**: 12—17
- [6] Preston T, Stewart W D P, Reynold C S. Bloom-forming Cyanobacterium *Microcystis aeruginosa* overwinters on sediment surface [J]. *Nature*, 1980, **288**: 365—367
- [7] Peterson R B. Effects of O₂ and CO₂ concentrations on Quantum yields of photosystems I and II in tobacco leaf tissue [J]. *Plant Physiol*, 1991, **97**: 1388—1394
- [8] Vorshak A, Yorizillo G, Tomasel L. Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of *Spirulina platensis* [J]. *J Appl Phyc*, 1994, **65**: 223—238
- [9] Reynolds C S. Growth and buoyancy of *Microcystis aeruginosa* Kütz [J]. *Emend. Elenkin* in a shallow eutrophic lake. *Proc. R. Soc. Lond*, B, 1973, **184**: 29—50
- [10] Shigeo Tsujimura, Hajime Tsukada, Hiroyuki Nakahara, *et al.* Seasonal variation of *Microcystis* population in sediments of Lake Biwa, Japan [J]. *Hydrobiologia* 2000, **434**: 183—192

STUDIES ON RECRUITMENT AND GROWTH CHARACTERISTIC OF *MICROCYSTIS* IN SEDIMENT

LI Kuoyu, SONG Lirong and WAN Neng

(Institute of Hydrobiology, The Chinese Academy Sciences, Wuhan 430072)

Abstract: Effect of different environmental factors, such as temperature, light and N/P, on the recruitment of *Microcystis* colony has been studied. The growth characteristics of *Microcystis* colony samples from the sediment and pelagic zone were also compared. Meanwhile, the influence of temperature on the chlorophyll a fluorescence of both dormant and vegetative cells of *Microcystis* sp. 940 was investigated too. The results suggested that the recruitment of *Microcystis* colony out of the sediment was affected significantly by temperature and light, but not N/P. *Microcystis* colony in the sediment initiated growth at 15°C and $30\mu\text{Em}^{-2}\text{s}^{-1}$, then buoyed to the surface after 15 days. Cultured at 10°C and $30\mu\text{Em}^{-2}\text{s}^{-1}$, *Microcystis* colony in sediment couldn't recruit during experiment. At 20°C and $30\mu\text{Em}^{-2}\text{s}^{-1}$, *Microcystis* colony grew actively in sediment, then moved into water after 5 days. The recruitment wasn't affected by different N/P. *Microcystis* colony initiating growth could obtain enough N/P in sediment. After *Microcystis* colony moved into water, its growth was restrained by N/P in water. The growth characteristic of *Microcystis* colony in sediment and pelagic zone was researched. Incubated at 10°C and 15°C, The growth of *Microcystis* colony in sediment and pelagic zone was laggard. In contrast to low temperature, its growth at 20°C and 25°C was active. The growth of *Microcystis* colony depended on light. With increasing of light intensity, its growth rate enhanced gradually. In darkness, it couldn't grow normally and was decomposed gradually by bacteria. However, the *Microcystis* colony that were illuminated at 15°C and $30\mu\text{Em}^{-2}\text{s}^{-1}$ grew actively. N/P had no effect on the initiating growth of *Microcystis* colony in sediment, because the colony could absorb N/P from sediment. But *Microcystis* colony that had already come into pelagic zone would be constrained by N/P. It was found that the optimal condition for recruitment occurred at 20°C And $30\mu\text{Em}^{-2}\text{s}^{-1}$, and the optimal condition for its growth was also 20°C and $30\mu\text{Em}^{-2}\text{s}^{-1}$, which was similar to the growth *Microcystis* colony in the pelagic zone.

Incubated at 10°C and $15\mu\text{Em}^{-2}\text{s}^{-1}$, the F_0 fluorescence of the vegetative cells of *Microcystis* reduced, but that of the dormant cells of *Microcystis* sp. 940 increased similarly at 20°C and 25°C, respectively. *Microcystis* colony that could survive in low temperature might have a mechanism to protect photosystem from damage.

Our result illustrated that there is a close relationship between recruitment of *Microcystis* out of the sediment and the outbreak of *Microcystis* blooms.

Key words: *Microcystis*; Sediment; Recruitment; Chlorophyll a fluorescence