

嗜水气单胞菌感染的中华鳖主要器官差减 cDNA 文库的构建

周秀霞^{1,2} 黄容^{1,2} 郭琼林¹

(1. 中国科学院水生生物研究所, 武汉 430072; 2 中国科学院研究生院, 北京 100039)

摘要: 以致病性嗜水气单胞菌(*Aeromonas hydrophila*)人工感染的中华鳖(*Trionyx sinensis*)肝、脾、肾组织为材料, 应用抑制性差减杂交(SSH)技术, 构建了嗜水气单胞菌感染组织的差减cDNA文库。以中华鳖管家基因 β -actin作为差减指标检测该文库差减效率达 2^{10} 倍, 表明感染细菌后某些差异表达基因得到了相应倍数的富集。将获得的cDNA片段连接到pMD18-T载体并转化大肠杆菌DH5 α 感受态细胞。PCR阳性检测显示差减片段在150—800bp之间。该差减cDNA文库的构建为快速分离和鉴定中华鳖与细菌感染相关的免疫基因及从分子水平探讨中华鳖的病理和抗感染免疫机制奠定了基础。

关键词: 中华鳖; 嗜水气单胞菌; 抑制性差减杂交; cDNA文库

中图分类号:S941

文献标识码:A

文章编号: 1000-3207(2007)04-0509-07

嗜水气单胞菌(*Aeromonas hydrophila*)在自然界中广泛分布, 致病性菌株感染可引起鱼类、两栖类、爬行类、鸟类和哺乳类等动物的败血症, 人亦可感染而发生腹泻等^[1]。嗜水气单胞菌也是一种严重危害中华鳖(*Trionyx sinensis*)的致病菌, 它能导致鳖的红脖子、红底板、出血性肠道坏死、穿孔、疖疮、出血等多种病症^[2-6], 严重地制约着养鳖业的发展。嗜水气单胞菌的胞外致病因子有毒素、蛋白酶、载铁体等, 其中毒素和蛋白酶是主要的致病因子^[7, 21-24]。药物防治是水产动物疾病防治的一种最简单、最直接的方法。然而由于嗜水气单胞菌对很多抗生素的耐药性很高^[8], 中华鳖的耐药性也比较高^[9], 药物大量使用后, 对水体和动物都有不良影响, 最终危害人体健康; 控制鳖病发生的另一条有效途径是应用疫苗进行免疫防治^[10], 但亟需进一步了解中华鳖免疫机制及其免疫应答规律。

提高机体免疫力是水产动物疾病防治的一个重要途径, 而对机体本身免疫相关因子的研究可为探讨机体免疫途径提供有力的依据, 为疫苗的研制和使用指示方向。但是对嗜水气单胞菌引起的鳖病的研究, 大多集中在病原研究、病理描述等

方面^[2-6], 而均未涉及机体本身——中华鳖感染后疾病发生的分子机制。而近年来, 中华鳖的分子生物学研究多集中于应用同源克隆方法寻找中华鳖系统进化的分子证据或种群分子标记等^[11, 13]; 或应用 SMART PCR 技术、Megaclone 和 Megasort 技术构建中华鳖 cDNA 文库以鉴定中华鳖与发育相关的基因^[14, 15]。

机体几乎所有的生命活动过程(包括病理的变化), 从本质上讲都是基因表达变化的结果。目前分离并且克隆差异性表达基因已成为功能性基因研究的热点。1996 年由 Diatchenco 等^[16]提出的抑制性差减杂交技术(Suppression subtractive hybridization, SSH)现已被广泛应用于分离、鉴定鱼类、鸟类和哺乳类动物与病毒、细菌感染等疾病相关免疫基因^[20-24], 而爬行类仍未见系统研究在感染或病理状态下基因表达变化的报道。本研究选用致病性嗜水气单胞菌T4株感染的中华鳖内脏主要器官——肝脏、脾脏和肾脏为材料, 利用 SSH 技术构建了嗜水气单胞菌感染的中华鳖差异表达基因差减 cDNA 文库, 并试图通过该差减 cDNA 文库的构建为分离与鉴定中华鳖与细菌感染相关的免疫基因、探讨中华鳖的病理机制与免疫机制奠定基础。

收稿日期: 2006-09-26 修订日期: 2007-03-16

基金项目: 国家自然科学基金资助项目(No. 30070588; No. 30371091)资助

作者简介: 周秀霞(1980—), 女, 河南商丘人; 硕士; 研究方向为水生动物病理学与免疫学。E-mail: zhxx@ihb.ac.cn

通讯作者: 郭琼林, E-mail: qguo@ihb.ac.cn

1 材料和方法

1.1 材料 嗜水气单胞菌 T4 株分离自患病中华鳖, 由南京农业大学陆承平教授惠赠。实验小鼠(昆明种) 体重 20—25g, 10 周龄, 购自湖北省卫生防疫站动物中心。实验中华鳖体重 50—80g, 取自武汉多福科技农庄股份有限公司国家龟鳖集约化养殖基地, 经过适当浓度的高锰酸钾浸泡 3—5min, 暂养一周, 确认健康无病后进行试验。

1.2 实验方法

细菌复壮及人工感染 T4 菌株于 LB 斜面 28℃培养 20h, 灭菌生理盐水洗下菌体, 平板计数并稀释到 4×10^8 cfu/mL, 取 0.4mL 腹腔注射实验小鼠; 从濒死小鼠肝内分离细菌, 划线接种 LB 平板, 培养后挑形态一致的优势单菌落接种 RS 培养。挑 RS 平板上的淡黄色菌落, 选取嗜水气单胞菌具有代表性的两个重要毒力基因气溶素基因(aerolysin gene, *aerA*)^[21]和丝氨酸蛋白酶基因(serine protease gene, *ahpA*)^[22, 23]进行 PCR 检测, 两者均为阳性的菌落, 扩大培养后以 1.6×10^8 cfu/只的感染浓度腹腔注射实验组中华鳖, 对照组注射灭菌生理盐水。

人工感染前后嗜水气单胞菌检测 对感染前嗜水气单胞菌及感染后从病鳖肝脏、肾脏、肠、血液及体表等处分离的培养物进行检测, 包括菌落形态特征、革兰氏染色、毒力基因检测和利用从实验组病鳖分离的培养物再感染健康鳖, 完成回归感染实验。

aerA 引物合成参照文献[24], *ahpA* 引物合成参照文献[23], 引物序列见表 1, 以提取的基因组 DNA 为模板进行 PCR 扩增。基因组 DNA 的提取参照文献[22], 稍加改进: 接种细菌到含 500μL 液体 LB 培养基的 1.5mL EP 管中, 28℃摇床培养 6—8h; 5000r/min 离心 10min 收集菌体, 用 TE(pH 8.0) 洗涤两次, 然后加入 100—200μL 的 TE, 混匀, 沸水浴 10 min。离心取上清直接用于 PCR 扩增, 现配现用。PCR 反应参数: 94℃预变性 2 min; 94℃30 s, 60℃(*aerA*) 或 55℃(*ahpA*) 30 s, 72℃2 min, 35 个循环; 72℃延伸 7 min。

组织总 RNA 的提取及 mRNA 的纯化 中华鳖在感染后第 3 天开始出现反应迟钝、腹甲充血并形成血斑等感染症状, 随后出现腹甲、脖颈、四肢、裙边等多处皮肤溃烂, 脚爪脱落; 第 5 天开始出现死亡; 解剖发现腹腔积水, 肝脏、脾脏、肾脏肿大、肠红肿充

血。选取症状典型的感染组中华鳖, 取肝脏、脾脏和肾脏, 迅速置液氮中。同时取对照组的相同器官组织。两组肝脏、脾脏和肾脏分别混合后各取 500 mg 用 Trizol(Invitrogen) 试剂提取总 RNA, PolyA⁺ RNA 用生物素标记的寡聚(dT)探针和链亲合素包裹的磁珠纯化 (PolyATract mRNA Isolation system (Promega)), 详细步骤参照试剂盒说明书。

表 1 PCR 扩增引物序列

Tab. 1 The primer sequences for PCR amplification

基因名称 Gene name	引物名称 Primer name	引物序列 (5'-3') Sequence name	产物长度 Product length
气溶素基因 Aerolysin gene(<i>aerA</i>)	A1	CCAAGGGTCTGGCGACA	209
丝氨酸蛋白酶基因 Serine protease gene(<i>ahpA</i>)	A2	TTTCACCGTAAACAGGATTG	
中华鳖			
肌动蛋白 Turtle	β- F	GTCATGGTGGAAATGGTC	269
β- actin gene (β- actin)	β- R	ATGGCTGGGTGTTGAAGGT	

中华鳖 β -actin 基因片段的扩增 根据海龟(*Chelonia mydas*, GenBank accession AY373753) 和拟鳄龟(*Chelydra serpentina serpentina*, accession AF541916) 的 β -actin 基因的保守核苷酸序列设计合成一对引物(见表 1), 用于扩增中华鳖的 β -actin 基因片段。

抑制性差减杂交和嗜水气单胞菌感染相关基因差减 cDNA 文库的构建 差减 cDNA 文库的构建采用 PCR-SelectTM cDNA Subtraction Kit (Clontech), 具体操作参照说明书进行。首先, 分别制备肝脏、脾脏和肾脏混合组织的 Driver cDNA 和 Tester cDNA。Driver cDNA 的制备是将对照组的 mRNA 逆转录成 ds cDNA, 然后用 *Rsa* I 酶切 3h 后完成。将感染组 ds cDNA 用 *Rsa* I 酶切后分成两份, 分别与 adaptor 1 和 adaptor 2R 连接后制备成 Tester 1 cDNA 和 Tester 2 cDNA。然后, 以制备好的 Driver cDNA 和 Tester cDNA 分别进行抑制性差减杂交:

首先将 Tester-1 cDNA 和 Tester-2 cDNA 分别与 Driver cDNA 进行第一次杂交, 混合两种杂交产物, 再与新鲜变性的 Driver cDNA 进行第二次杂交, 两次差减杂交使差异表达基因的 cDNA 得到了两次富集; 第二次杂交产物以接头的外侧共有序列引物 PCR primer 1 进行第一次 PCR 扩增, 第一次 PCR 产物再用接头的内侧共有序列引物 Nested primer1 和 2R 进行第二次 PCR 扩增, 进一步富集差异表达序列并进一步降低背景。进行差减杂交的同时, 也制备未差减 cDNA 以检测差减文库的差减效率。未差减的 cDNA 的制备方法是: 在连接两种接头制备 Tester cDNA 时, 将刚加好样尚未进行连接反应的 Tester-1 和 Tester-2 cDNA 各取 2 μL 混合, 然后进行连接反应。

接头连接效率和差减效率的检测 接头连接效率的检测以中华鳖管家基因 β -actin 为指标。以中华鳖 β -actin 的特异上游引物和下游引物为一个组合、以试剂盒提供的接头引物 PCR primer 1 和 β -actin 的下游引物为一个组合进行 PCR 扩增, 比较不同引物组合扩增产物的大小及产量, 鉴定连接效率的优劣。PCR 反应条件为: 75 °C 5min, 94 °C 2min, 然后 94 °C 30s, 62 °C 30s, 72 °C 40 s 扩增 30 个循环。检测差减 cDNA 文库的差减效率以管家基因 β -actin 为指标。PCR 反应除不需 75 °C 5min 外, 其余参数皆与上同。

差减 cDNA 文库的构建及差减 cDNA 片段大小检测 将制备的差减 cDNA 直接连接到 pMD18-T 载体 (TaKaRa), 即得到差减 cDNA 质粒文库。将连接产物转化大肠杆菌 DH5 α 感受态细胞, 涂布于含氨苄青霉素的琼脂平板, 37 °C 倒置培养过夜, 随机挑选单个菌落, 37 °C 摆床培养 5h。取 1 μL 菌液为模板, 以试剂盒提供的引物 Nested primer 1 和 2R 在 20 μL 体系 PCR 检测插入片段大小。PCR 扩增参数为: 94 °C 15s, 65 °C 30s, 72 °C 1.5min, 共 30 个循环。

2 结果

2.1 人工感染前后嗜水气单胞菌检测

人工感染前后嗜水气单胞菌菌落形态一致; 革兰氏染色均显示为阴性短杆菌; 采用气溶素基因 (*aerA*) 和丝氨酸蛋白酶基因 (*ahpA*) 的特异引物对感染前的嗜水气单胞菌 T4 株和感染后从病鳖体内分离到的培养物进行 PCR 扩增后, 各取 4 μL 的扩增产物进行电泳, 结果均可检测到 209bp (*aerA*) 和约 900bp (*ahpA*) 的扩增带 (图 1), 与预期产物大小一致, 且感染前后 PCR 检测结果相同。回归实验也显

示相同的感染症状。以上结果证实实验组中华鳖为嗜水气单胞菌 T4 株感染。

2.2 中华鳖 β -actin 基因片段的扩增

PCR 扩增结果见图 3 (Lanes 2 and 4), 扩增片段与预期大小一致。

2.3 组织总 RNA 的提取

用 Trizol 提取的对照组和实验组中华鳖肝脏、脾脏和肾脏混合组织总 RNA, 经紫外分光光度计测定 OD260/OD280 的比值均在 1.9 以上, 电泳显示 RNA 弥散带主要位于 0.5 kb 以上, 28S、18S 条带清晰 (图 2); 纯化的 mRNA OD260/OD280 的比值均在 2.0 以上, 表明 RNA 质量达到建库要求。

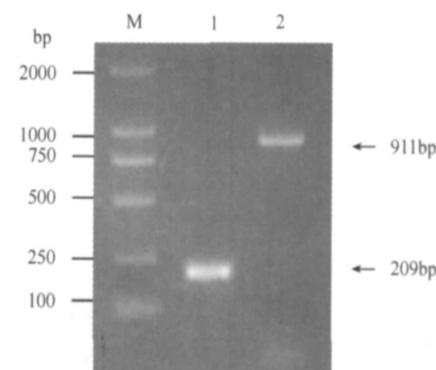


图 1 从人工感染中华鳖分离的嗜水气单胞菌毒力及致病性基因检测

Fig. 1 Detection of toxicity and pathogenic genes in *A. hydrophila* isolated from the internal tissue of experimental infected *T. sinensis*

M: DNA 分子量标准 DL2000; 1. 气溶素基因 (*aerA*);

2. 丝氨酸蛋白酶基因 (*ahpA*)

M: DNA marker DL2000; 1. aerolysin gene (*aerA*);

2. serine protease gene (*ahpA*)

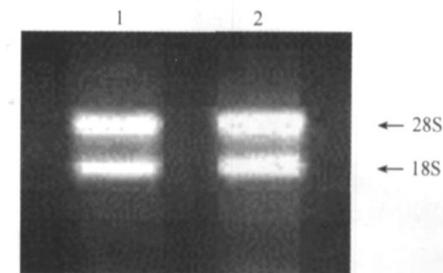


图 2 中华鳖肝脏、脾脏和肾脏混合组织的总 RNA

Fig. 2 Total RNAs extracted from the mixture of livers, spleens and kidneys of *T. sinensis*

1, 2 分别为感染组和对照组 Lanes 1 and 2 represent uninfected and infected groups, respectively

2.4 Tester cDNA 接头连接效率的检测

以中华鳖 β -actin 的特异上游引物和下游引物为一个组合、以试剂盒提供的接头引物 PCR primer1 和 β -actin 的下游引物为一个组合, 以加了接头的 Tester cDNA 为模板进行 PCR 扩增。结果表明成功制备的 tester cDNA, 可用于下一步的两轮杂交和两轮 PCR 扩增(图 3)。

2.5 cDNA 文库差减效率检测

通过检测管家基因 β -actin 在差减和未差减 cDNA 的第二次抑制性 PCR 产物中量的差异来鉴定文库的差减效率。结果显示, 以未差减的 cDNA 为模板时, β -actin 基因在 20 个 PCR 循环便可检测到扩增产物, 而差减后的 cDNA 则在 30 个循环才有扩增带的出现(图 4), 说明两组材料中的管家基因已被充分抑制, 所构建文库的差减效率高达近 2^{10} 倍。

2.6 差减文库 cDNA 片段大小的鉴定

将差减 cDNA 片段连接到 pMD18-T 载体, 转化 *E. coli* DH5 α 。培养后随机挑取一定数量的克隆进

行 PCR 检测。结果显示克隆片段大小在 150—800 bp 之间。图 5 为随机挑取的 11 个克隆的 PCR 结果。

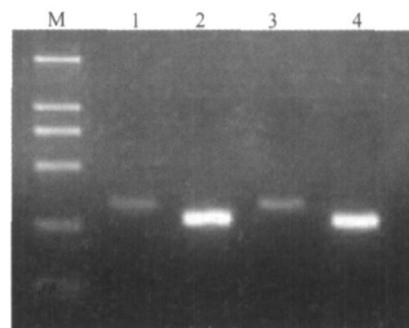


图 3 Tester cDNA 接头的连接效率检测

Fig. 3 Detection of the adaptor ligation efficiency of tester cDNA
M: DNA 分子量标准 DL2000; 1 和 3: 以 PCR primer 1 和 β -actin 的下游引物进行扩增的 PCR 产物; 2 和 4: 以 β -actin 的上游和下游引物进行扩增的 PCR 产物

M: DNA marker DL2000; Lanes 1 and 3: PCR products amplified by adapter primer PCR primer 1 and β -actin downstream primer; Lanes 2 and 4: PCR products amplified by β -actin upstream and downstream primer

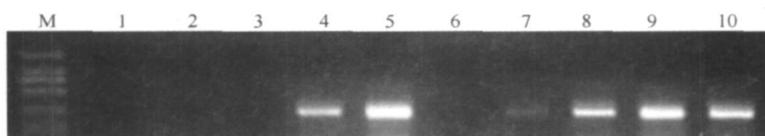


图 4 以 β -actin 为指标检测差减文库的差减效率

Fig. 4 Subtraction efficiency of subtracted cDNA library by detection of β -actin gene

M: DNA 分子量标准 DL2000; 1—5: 以差减 cDNA 为模板分别在 15, 20, 25, 30, 35 个循环的 PCR 产物; 6—10: 以未经差减 cDNA 为模板分别在 15, 20, 25, 30, 35 个循环的 PCR 产物
M: DNA marker DL2000; 1—5 PCR products of unsubtracted cDNA in 15, 20, 25, 30 and 35 cycles, respectively; 6—10 PCR products of subtracted cDNA in 15, 20, 25, 30 and 35 cycles, respectively

图 5 差减 cDNA 文库中插入 cDNA 片段大小的鉴定

Fig. 5 Identification of the inserted cDNA fragments in subtractive cDNA library

M: DNA 分子量标准 100bp ladder; 1—11: 从差减文库中随机挑选的克隆

M: 100bp DNA ladder; 1—11: 11 colonies randomly selected from the subtractive cDNA library

3 讨 论

要构建抗感染及免疫相关基因差减 cDNA 文库, 首先要确定用于制备 Tester cDNA 与 Driver cDNA 的两组材料间有显著的基因表达差异, 同时也要确认基因的差异表达由嗜水气单胞菌感染所致。本实验选用毒力和致病性均较强的 T4 株 (*aerA* 和 *dhpA* 均为阳性^[21-24]) 感染健康中华鳖。中华鳖在感染后第 3 天开始出现感染症状, 第 5 天开始出现死亡; 解剖出现腹腔积水及内脏器官严重病变。我们对病鳖肝、肾等处的分离物进行培养并通过对 *aerA* 和 *dhpA* 的检测已证实发病中华鳖确为嗜水气单胞菌 T4 株感染。机体病理变化是基因差异性表达的结果, 因此被感染的中华鳖与抗感染或免疫相关基因应该得到一定的表达。

利用 SSH 技术构建差减文库除了要求质量较好的 RNA 和 polyA⁺ RNA 外, 进行差减杂交前还有关键的一步是 Tester cDNA 的接头连接, 连接效率高低直接关系到差减杂交的成败。另一关键是差减的效率, 即是否将共有序列充分去除。连接效率和差减效率均可以 PCR 方法检测, 但首先需要找到中华鳖合适的管家基因。我们根据海龟和拟鳄龟 β -actin 基因的保守序列设计合成了一对引物, 用于扩增中华鳖的 β -actin 基因。此对引物扩增的片段不含 *Rsa* I 酶切位点, 因为用于构建差减文库的 Tester 和 Driver cDNA 都已经过 *Rsa* I 酶切。预备实验表明可以扩增出与预期大小相同的片段, 且在中华鳖的各组织中表达稳定, 可以用作内参检测实验结果。本试验结果显示两组材料中的管家基因已被充分抑制, 所构建文库的差减效率高达近 2^{10} 倍, 因此也初步表明该文库的构建是成功的。

目前, 对细菌感染中华鳖的机制认识不够深入, 而对感染细菌的中华鳖免疫反应机制的认识更是十分有限。因此克隆中华鳖抗细菌感染免疫相关基因就显得尤为重要, 而差减 cDNA 文库的成功建立将有助于快速分离、鉴定和克隆中华鳖与细菌感染相关的免疫基因。此外, SSH 也是一种能够快速分离与鉴定新基因的实验方法, 这些基因的克隆和功能分析将极大地推动爬行动物免疫学研究的发展。而检测出差异基因或新基因并不是最终目的, 更多的研究重点将要倾向于推测并检验这些差异基因或者新基因的功能及其在病变过程中的时空表达变化, 并对基因的功能进行深入的研究包括疾病基因组学的研究。相信随着研究的不断深入, 在鳖病的发病

机制、病理分析和防治等方面都会取得重要进展。

随着生活环境的变化、肺的发育、鳃的退化和以羊膜卵繁殖后代, 使爬行类动物成为脊椎动物演化史上的一个重要的里程碑。然而, 长时期以来, 爬行动物免疫学的研究主要因实验材料的贫乏而远远落后于鸟类及哺乳类动物, 甚至不及于鱼类和两栖类。由于背景资料的缺乏和与哺乳动物较低的同源性, 应用同源克隆方法克隆爬行动物与感染相关的免疫基因困难较大。迄今为止, 爬行动物免疫相关基因研究报道较少: 1985 年, Litman 等报道了凯门鳄 (*Caiman crocodiles*) 三种 IgVH 基因 (C₃、E₁、G₄) 的克隆^[25], 这是爬行类基因克隆的首次报道; 随后, Fritzinger 等、Turchin 等相继报道了眼镜蛇 (*Naja naja*) 的补体 C3 基因^[26] 和巴西彩龟 (*Trachemys scripta elegans*) 的 IgM 重链部分序列^[27]; 1999 年夏春报道了中华鳖 MHC I^a2 (Trs₁ BX1) 部分序列^[28]; 2005—2006 年 Miller 等报道了斑点楔齿蜥 (*Sphenodon punctatus*) 的 MHC I^a 链和 MHC IV 基因^[29,30]。由此可见, 爬行动物分子免疫学研究进展缓慢。因此, 从理论上来说, 爬行动物分子免疫学是比较免疫学上一个最为关注和亟待深入研究的领域。本实验, 我们应用 SSH 技术成功构建了中华鳖感染组织的 cDNA 文库, 并从中已首次鉴定、克隆了一批中华鳖免疫相关基因如 IL-8、ISG12、SAA、CD9、CD59 等 (另文报道), 其中 IL-8、CD9、CD59、ISG12 等免疫相关基因均为爬行动物首次鉴定和克隆。本研究结果表明: 该差减 cDNA 文库的构建为快速分离和克隆中华鳖与细菌感染相关的免疫基因及从分子水平探讨中华鳖的病理和抗感染免疫机制奠定了基础。

参考文献:

- [1] Lu C P. Pathogenic *Aeromonas hydrophila* and the fish diseases caused by it [J]. *Journal of Fisheries of China*, 1992, 16(3): 282—288 [陆承平. 致病性嗜水气单胞菌及其所致鱼病综述. 水产学报, 1992, 16(3): 282—288]
- [2] Yu Y R, Chu W H, Li K M. Isolation and identification of the pathogen of red neck disease and red abdominal shell disease of *Trionyx sinensis* [J]. *Progress in Veterinary Medicine*, 2004, 25(2): 102—105 [虞蕴如, 储卫华, 李克敏. 中华鳖红脖子、红底板病的病原分离鉴定. 动物医学进展, 2004, 25(2): 102—105]
- [3] Yang X L, Zhou J G, Ke F E, et al. Epidemiology intestinal necrosis haemorrhagic of soft-shelled turtle [J]. *Journal of Fisheries of Science of China*, 1998, 5(2): 73—78 [杨先乐, 周剑光, 柯福恩, 等. 中华鳖出血性肠道坏死症流行病学. 中国水产科学, 1998, 5(2): 73—78]

[4] Sun P F, Cai W Q. Pathology of the cavemed disease of Chinese soft-shelled turtle [J]. *Journal of Fisheries of China*, 1996, **20**(2): 120—124 [孙佩芳, 蔡完其. 鳖穿孔病的病原研究. 水产学报, 1996, **20**(2): 120—124]

[5] Zhou J G, Yang X L, Ai X H. Pathogen of the furunculosis, red neck and red spot complicating diseases of *Trionyx sinensis* [J]. *Journal of Fisheries of China*, 1999, **23**(3): 270—277 [周剑光, 杨先乐, 艾晓辉. 中华鳖疖疮、红脖子、赤斑病并发症的病原研究. 水产学报, 1999, **23**(3): 270—277]

[6] Lu H D, Jin L H. Studies on the *Aeromonas hydrophila* septicemia of soft-shelled turtle (*Trionyx Sinensis*) [J]. *Journal of Fisheries of China*, 1996, **20**(3): 223—234 [陆宏达, 金丽华. 鳖嗜水气单胞菌败血症的研究. 水产学报, 1996, **20**(3): 223—234]

[7] Allan B J, Stevenson R M W. Extracellular virulence factors of *Aeromonas hydrophila* in fish infections [J]. *Can J Microbiol*, 1981, **27**: 1114—1122

[8] Shi L, Li L, Zhu Q H, et al. Determine on susceptibility of pathogenic bacteria in soft shelled turtle (*Pedicularis sinensis*) to thirteen antimicrobial drugs [J]. *Journal of Henan Normal University (Natural Science)*, 2002, **30**(2): 99—104 [石灵, 李莉, 朱庆红, 等. 中华鳖常见致病菌对 13 种抗菌药物的敏感性测定. 河南师范大学学报(自然科学版), 2002, **30**(2): 99—104]

[9] Yang X L, Ke F E, Liu Z Q. Susceptibility of childish soft-shelled turtle to medicines commonly used [J]. *Journal of Fishery Sciences of China*, 1996, **3**(2): 58—64 [杨先乐, 柯福恩, 刘仲琪. 中华鳖稚鳖对几种药物敏感性的研究. 中国水产科学, 1996, **3**(2): 58—64]

[10] Yang X L, Ke F E, Ye C G. The turtle diseases and their prevention and control [M]. Beijing: Agriculture Science Technology Press. 1995, 97—101 [杨先乐, 柯福恩, 叶重光. 鳖病及其防治. 北京: 农业科学技术出版社. 1995, 97—101]

[11] Nie L W, Shan X N, Wang M, et al. The conservative region sequence analysis of four *Sox* genes in the *Trionyx sinensis* [J]. *Acta Hydrobiologica Sinica*, 2001, **25**(3): 245—250 [聂刘旺, 单祥年, 汪鸣, 等. 中华鳖 4 个 *Sox* 基因保守区的序列分析. 水生生物学报, 2001, **25**(3): 245—250]

[12] Venkatesh B, Erdmann M V, Brenner S. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates [J]. *Proc Natl Acad Sci. USA*, 2001, **98**(20): 11382—11387

[13] Kuraku S, Ishijima J, Nishida-Umehara C, et al. cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids [J]. *Chromosome Res*, 2006, **14**: 187—202

[14] Zheng J F, Zhu M Y. Construction and characterization of a cDNA library from kidney/urogenital complex tissues of one-week old embryos of the soft-shelled turtle *Trionyx sinensis* [J]. *Acta Zoologica Sinica*, 2005, **51**(6): 1156—1161 [郑济芳, 朱睦元. 中华鳖孵化一周胚胎的肾脏/尿生殖嵴混合组织的 cDNA 文库构建与特征. 动物学报, 2005, **51**(6): 1156—1161]

[15] Kuraku S, Usuda R, Kuratani S. Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution [J]. *Evol. Dev*, 2005, **7**: 1, 3—17

[16] Diatchenko L, Lau Y-F C, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries [J]. *Proc Natl Acad Sci USA*, 1996, **93**(12): 6025—6030

[17] Tsai S C M, Ewart K V, Penny S, et al. Identification of immune relevant genes from Atlantic salmon using suppression subtractive hybridization [J]. *Mar. Biotechnol.*, 2004, **6**(3): 199—214

[18] Abdalla S A, Horiochi H, Furusawa S, et al. Molecular study on chicken tumor necrosis factor receptor II and tumor necrosis factor receptor associated factor-5 [J]. *Vet Immunol Immunop*, 2004, **98**(1—2): 31—41

[19] Jolita J U, Thomas J S, Zhao S H, et al. Analysis of porcine differential gene expression following challenge with *Salmonella enterica* serovar Choleraesuis using suppression subtractive hybridization [J]. *Vet Microbiol*, 2006, **114**(1—2): 60—71

[20] Zhang Y B, Shi Y H, Gui J F. Construction of antiviral subtractive cDNA library of cultured fish cells [J]. *Acta Hydrobiologica Sinica*, 2003, **27**(2): 113—118 [张义兵, 石耀华, 桂建芳. 鱼类培养细胞抗病毒基因差减 cDNA 文库的构建. 水生生物学报, 2003, **27**(2): 113—118]

[21] Lu Q, Ren R W, Wang W D, et al. Detection of the aerolysin gene in *Aeromonas hydrophila* by the polymerase chain reaction [J]. *Chinese Journal of Veterinary Science*, 2001, **21**(4): 347—349 [卢强, 任瑞文, 王文东, 等. 嗜水气单胞菌气溶素基因 PCR 检测方法的建立. 中国兽医学报, 2001, **21**(4): 347—349]

[22] Casan A, Fregeneda J, Aller M, et al. Cloning, characterization, and insertional inactivation of a major extracellular serine protease gene with elastolytic activity from *Aeromonas hydrophila* [J]. *J Fish Dis*, 2000, **23**: 49—59

[23] Chu W H, Lu C P. Cloning and sequence analysis of an extracellular serine-protease gene of *Aeromonas hydrophila* J-1 [J]. *Journal of Fisheries of China*, 2004, **24**(1): 84—88 [储卫华, 陆承平. 嗜水气单胞菌 J-1 株丝氨酸蛋白酶基因克隆与序列分析. 水产学报, 2004, **24**(1): 84—88]

[24] Pollard D R, Johnson W M, Libr H, et al. Detection of the aerolysin gene in *Aeromonas hydrophila* by the polymerase chain reaction [J]. *J Clin Microbiol*, 1990, **28**(11): 2477—2481

[25] Litman G W, Murphy K, Berger L, et al. Complete nucleotide sequences of three VH genes in Caiman, a phylogenetically ancient reptile: evolutionary diversification in coding segments and variation in the structure and organization of recombination elements [J]. *Proc. Natl. Acad. Sci. USA*, 1985, **82**(3): 844—848

[26] Frizinger D C, Petrella E C, Connelly M B, et al. Primary structure of cobra complement component C3 [J]. *J. Immunol.*, 1992, **149**(11): 3554—3562

[27] Turchin A, Hsu E. The generation of antibody diversity in the turtle [J]. *J. Immunol.*, 1996, **156**(10): 3797—3805

[28] Xia C. Molecular cloning and sequencing analysis of MHC class soft-shelled turtle (*Trionyx sinensis*) [J]. *Chinese Journal of Immunology*, 1999, **15**(2): 77—79 [夏春. 中华鳖 MHC I a2

链基因克隆及序列分析. 中国免疫学杂志, 1999, 15(2): 77—79]

[29] Miller H C, Belov K, Daugherty C H. Characterization of MHC class I genes from an ancient reptile lineage, *Sphenodon* (tuatara) [J]. *Immunogenetics*, 2005, 57(11): 883—891

[30] Miller H C, Belov K, Daugherty C H. MHC Class I Genes in the tuatara (*Sphenodon* spp.): evolution of the MHC in an ancient reptilian order [J]. *Mol. Biol. Evol.*, 2006, 23(5): 949—956

CONSTRUCTION OF A SUBTRACTIVE cDNA LIBRARY FROM THE INTERNAL ORGANS OF *TRIONYX SINENSIS* EXPERIMENTALLY INFECTED BY *AEROMONAS HYDROPHILA*

ZHOU Xiutian^{1,2}, HUANG Rong^{1,2} and GUO Qiong-Lin¹

(1. Institute Of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072; 2. Graduate School of Chinese Academy of Sciences, Beijing 100039)

Abstract: *Aeromonas hydrophila* is one of the main causative agents resulting in serious infectious diseases of turtles and other animals. To understand anti-infectious response to bacteria in reptile, a subtractive cDNA library was constructed from the liver, spleen and kidney of Chinese soft shelled turtle (*Trionyx sinensis*) experimentally infected with *A. hydrophila* T4, using suppression subtractive hybridization (SSH). Experimental turtles were injected intraperitoneally with 1.6×10^8 CFU live *A. hydrophila* T4 and the control turtles were injected with sterilized normal saline. The liver, spleen and kidney samples of infectious and control turtles were dissected out immediately, and frozen in liquid nitrogen for isolation of total RNA. About 500 mg tissues containing approximately equal amount of liver, spleen and kidney from infectious and control turtles were used as tester and driver samples, respectively. Total RNA extraction was performed from the two samples, followed by mRNA isolation. Using equal amounts of mRNA (2 μ g) from tester and driver samples, double-strand cDNA was synthesized and digested with restriction enzyme *Rsa*I for three hours. The *Rsa*I digested tester was subdivided into two pools, and each was ligated with a different adaptor. The *Rsa*I digested driver cDNA was not exposed to adaptors. Then an excess of driver cDNA was added to each tester cDNA for the first round of hybridization to enrich for differentially expressed sequences. In the second, the two samples from the first hybridization were mixed together and freshly denatured driver DNA was added to further enrich for differentially expressed sequences. New molecules were formed which consist of differentially expressed cDNAs with different adaptors on each end. Then two rounds of suppression PCR were performed. In the first amplification, only ds cDNAs with different adaptor sequences on each end were selected and exponentially amplified. In the second, nested PCR was used to further reduce background and enrich for differentially expressed sequences. Turtle β -actin gene was used as internal control to estimate the efficiency of subtractive cDNA. In this library, β -actin was subtracted significantly at about 2^{10} folds, suggesting that the subtractive cDNA library was successfully constructed. The PCR products were inserted into pMD18-T vector and transformed to competent *E. coli* DH5 α cells to set up a subtracted and normalized PCR fragment library. PCR analysis showed that the inserts were 150—800 bp in length. To our knowledge, this is the first report of a subtractive cDNA library constructed from experimentally bacteria infected tissue in reptile. A series of immune-relevant genes, such as IL-8, CD9, CD59, SAA, and ISG12 were first isolated and cloned in turtles (will report in another paper), and the IL-8, CD9, CD59 and ISG12 genes were also first isolated in reptile. The successfully constructed cDNA library will be essential for rapid isolation of differentially expressed genes related to *A. hydrophila* infection, and useful for understanding the anti-infectious molecular mechanism in reptile.

Key words: *Trionyx sinensis*; *Aeromonas hydrophila*; Suppression subtractive hybridization (SSH); cDNA library