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* KX4EIRIE: AcCE, Acl fI Acll SRIARRAEZENTMRMBR BEEAMBEES; AvI f1 AVIL )
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BERIKR T TELF . RS T AIEE (A 10 FHinvsoE, I BB, BA S 25%
CO, B9 Ny, JEHREE 3,000—5,000 Ik, 30°C) FUEALHES: (F 5 FHRAIE, RBBEEE, BAS
0.5% CO, I Ar, SEIREE 10,000 Ix, 30°C), 474 IR B ABHIE IO H N, SRFEAM
HRKEFR. RARFBAER EEE. FE. RE), 1653635 E 0
R
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BEAREREI 120—150 35, ZARSEN tis-HCl ZriE (pH7.4, & Na5,04
0.5mg/ml) 120—150 ml, f# G, A 20 pg/ml DNase, FFH)E HIHY K EH FE RS
FLBEWE, ARYKEEL, BLARMER (CE), Lg% 6.9 Ar (IBNE sk
BEIW CE, BiEILARK ris-HCl G5 HEPS Zhi ti%h £ KXo

CE #/7EA O E i, VAE LR EHBREZBIREN(EERBEER) M CERY
#—/A DEAE-# 4% (DE52) B, BERAE —REHR, FIE2K 50 ml, EEEKYE
4—5 {5, HiE ik 70 BAIE A, 2Bk AE T DEAE-F AR, T8 A 0.1,0.25
T 0.6 M .NaCl ] tris-HCl ZZm (& 0.3 mg/ml Na,S,0,, pH 7.4) 432, fefarl B 2
BEERHEBEONSEEH. BEEB OB 4/ DEAE-F 4 RERGEITF4L, &5
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ARSEORHERRERCRRE 1 %) REEE R B X R, BLAHXFAME, mR
VEFRAL S AT TS » MR T — AN/ B0 45 B e el Tk RE BB A T FLBR 1AL ™

Pl &, 3EES AN RERE, T 13-17°C £ 4 F#T. RN K.
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4£.6.3 ml BYEIEUMHET-E, A 100a moles HEPS 0.3ml, 5u moles MgCl,-H;O 0.1
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BRI RREENHERBMA, BAELZHRME R -8 % 30 48 (80—100 &&/%,
30°C), HEH 20% SRR IR . R A 147 100 ZSAF AR, (&
FEBETLEER, GDX-502 EEMRETER (64 X 2000mm), ZRIRESA L
wBEBRAIT 5o
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Tab. 1 Cross-reactivity of two components of nitrogenase from A. cylindrica and A. vinelandii

R Specific-suivis of A
RE Nitrogenase systems gzgz/i:?:c/t:s; (;ro'l:;);:;S Specific a?tivity of
H,-evolution (n
Tests EHEN *EE AETHEH EFESES  |moles Hy/min, /mg.
- MoFe-protein Fe-protein Based on Based on Fe-protein)
(mg) (mg) Fe-protein MoFe-protein
Acl (1.30) 0 / 1.35 not detered
0 Acli(0.18) 0 / not detered
I Avl (3.66) 0 / 0.03 not detered
0 AvH(0.22) 0.30 / not detered
Acl (2.60) Acli(0.37) 142.46 20.27 not detered
AvI (3.66) Acli(1.12) 119.42 36.54 not detered
Acl (2.59) 0 / 0 0
0 AclI(0.68) 0 / 0
AvI (3.92) 0 / 0.02 0
I 0 AvII(1.00) 0.15 / 0.16
Ad (1.27) AcIT(0.34) 1.78 3.02 12.03
AvI (1.18) AcII(0.34) 4.07 1.17 8.02
Acl (1.27) AvII(1.01) 6.29 5.00 1.56
Avl (3.92) AvII(1.00) 22.36 8.67 33.52

* KPR X R EGE B SRR AR ERE N ARE
The specific activity of each cross-reactivity shown in the Table has been subtracted by back-ground
value of Fe-protein or MoFe-protein.
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Fig. | Time course of the cross-reactivity of Fe-protein GEORFRLI, FHREAEHS%

from 4. cylindrica and MoFe-protein from A. vinelandii BN S T HROS 1B, IR
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Fig. 2 The relationship between acetylene reduction activity and molar ratio of Fe-protein
to MoFe-protein in the cross-reaction of two components of nitrogenase from A. cylindrica
and Azotobacter

S FEE:
Molecular weights based on: 230,000 AcL; 64,000 Acll; 220,000 Avi; 62,000 AvIl.
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Fig. 3 The relationship between H,-evolution activity and molar ratio of Fe-protein to MoFe-protein
in the cross-reaction of two components of nitrogenase from A. cylindrica and Azotobacter

SFEEE 2 BiR.

Molecular weights based on those shown in Fig. 2.
BRI R, BIREFERERT B LML, ER B RABRHSEOREE QB IHAL,
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hadex G-100 BE—Faifl, WREMRERERMEEHET, MAZRAIERESLRECL
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CROSS-REACTIVITY OF Fe-PROTEIN OF ANABAENA
CYLINDRICA AND MoFe-PROTEIN OF
AZOTOBACTER VINELANDII

He Zhenrong Lin Huimin Du Daixian,
Dai Lingfen Xing Wusen and Li Shanghao
(Institute of Hydrobiology, Academia Sinica, Wuhan)

Abstract

A modified method was used for the separation and purification of Anabaena cy-
lindrica nitrogenase, based upon which a further study on the cross-reactivity between
Fe-protein from A. eylindrica and MoFe-protein from Azofobacter vinelandii was made.
Results indicated that these two heterologous components were able to give an effective
cross-reaction and showed a relatively strong nitrogenase activity. The specific acti-
vities of acetylene reduction and H;-evolution contributed by ecross-reacting heterologo-
us components were as high as 83.89 and 66.7%, respectively, of that produced by algal
homologous complementary response. In comparison with the kinetics of the algal ho-
mologous complementary reaction, it was found that the optimum molar ratioc of Fe-
protein to MoFe-protein for heterologous cross-reaction is much higher (5:1), the time
course for both reactions being approximately the same. Discordant with the current
conception, our findings demonstrate that the Fe-protein of 4. cylindrica can form effe-
ctive complexes with the MoFe-protem of Azotobacter.
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